动力学趋化核的宏观测量、适态性和病态性的数值重建

Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang
{"title":"动力学趋化核的宏观测量、适态性和病态性的数值重建","authors":"Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang","doi":"arxiv-2309.05004","DOIUrl":null,"url":null,"abstract":"Directed bacterial motion due to external stimuli (chemotaxis) can, on the\nmesoscopic phase space, be described by a velocity change parameter $K$. The\nnumerical reconstruction for $K$ from experimental data provides useful\ninsights and plays a crucial role in model fitting, verification and\nprediction. In this article, the PDE-constrained optimization framework is\ndeployed to perform the reconstruction of $K$ from velocity-averaged, localized\ndata taken in the interior of a 1D domain. Depending on the data preparation\nand experimental setup, this problem can either be well- or ill-posed. We\nanalyze these situations, and propose a very specific design that guarantees\nlocal convergence. The design is adapted to the discretization of $K$ and\ndecouples the reconstruction of local values into smaller cell problem, opening\nup opportunities for parallelization. We further provide numerical evidence as\na showcase for the theoretical results.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"44 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical reconstruction of the kinetic chemotaxis kernel from macroscopic measurement, wellposedness and illposedness\",\"authors\":\"Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang\",\"doi\":\"arxiv-2309.05004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directed bacterial motion due to external stimuli (chemotaxis) can, on the\\nmesoscopic phase space, be described by a velocity change parameter $K$. The\\nnumerical reconstruction for $K$ from experimental data provides useful\\ninsights and plays a crucial role in model fitting, verification and\\nprediction. In this article, the PDE-constrained optimization framework is\\ndeployed to perform the reconstruction of $K$ from velocity-averaged, localized\\ndata taken in the interior of a 1D domain. Depending on the data preparation\\nand experimental setup, this problem can either be well- or ill-posed. We\\nanalyze these situations, and propose a very specific design that guarantees\\nlocal convergence. The design is adapted to the discretization of $K$ and\\ndecouples the reconstruction of local values into smaller cell problem, opening\\nup opportunities for parallelization. We further provide numerical evidence as\\na showcase for the theoretical results.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"44 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.05004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.05004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌由于外界刺激(趋化性)而进行的定向运动,在微观相空间上可以用速度变化参数K来描述。从实验数据中对$K$进行数值重建提供了有用的见解,在模型拟合、验证和预测中起着至关重要的作用。在本文中,部署了pde约束优化框架,从一维域内部的速度平均本地化数据中执行$K$的重建。根据数据准备和实验设置的不同,这个问题可以是适定的,也可以是不适定的。我们分析了这些情况,并提出了一个非常具体的设计,以保证局部收敛。该设计适合于K的离散化,并将局部值的重建解耦到较小的单元问题中,从而为并行化提供了机会。我们进一步提供了数值证据来展示理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical reconstruction of the kinetic chemotaxis kernel from macroscopic measurement, wellposedness and illposedness
Directed bacterial motion due to external stimuli (chemotaxis) can, on the mesoscopic phase space, be described by a velocity change parameter $K$. The numerical reconstruction for $K$ from experimental data provides useful insights and plays a crucial role in model fitting, verification and prediction. In this article, the PDE-constrained optimization framework is deployed to perform the reconstruction of $K$ from velocity-averaged, localized data taken in the interior of a 1D domain. Depending on the data preparation and experimental setup, this problem can either be well- or ill-posed. We analyze these situations, and propose a very specific design that guarantees local convergence. The design is adapted to the discretization of $K$ and decouples the reconstruction of local values into smaller cell problem, opening up opportunities for parallelization. We further provide numerical evidence as a showcase for the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1