定价欧洲期权与谷歌AutoML, TensorFlow,和XGBoost

Juan Esteban Berger
{"title":"定价欧洲期权与谷歌AutoML, TensorFlow,和XGBoost","authors":"Juan Esteban Berger","doi":"arxiv-2307.00476","DOIUrl":null,"url":null,"abstract":"Researchers have been using Neural Networks and other related\nmachine-learning techniques to price options since the early 1990s. After three\ndecades of improvements in machine learning techniques, computational\nprocessing power, cloud computing, and data availability, this paper is able to\nprovide a comparison of using Google Cloud's AutoML Regressor, TensorFlow\nNeural Networks, and XGBoost Gradient Boosting Decision Trees for pricing\nEuropean Options. All three types of models were able to outperform the Black\nScholes Model in terms of mean absolute error. These results showcase the\npotential of using historical data from an option's underlying asset for\npricing European options, especially when using machine learning algorithms\nthat learn complex patterns that traditional parametric models do not take into\naccount.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing European Options with Google AutoML, TensorFlow, and XGBoost\",\"authors\":\"Juan Esteban Berger\",\"doi\":\"arxiv-2307.00476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have been using Neural Networks and other related\\nmachine-learning techniques to price options since the early 1990s. After three\\ndecades of improvements in machine learning techniques, computational\\nprocessing power, cloud computing, and data availability, this paper is able to\\nprovide a comparison of using Google Cloud's AutoML Regressor, TensorFlow\\nNeural Networks, and XGBoost Gradient Boosting Decision Trees for pricing\\nEuropean Options. All three types of models were able to outperform the Black\\nScholes Model in terms of mean absolute error. These results showcase the\\npotential of using historical data from an option's underlying asset for\\npricing European options, especially when using machine learning algorithms\\nthat learn complex patterns that traditional parametric models do not take into\\naccount.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2307.00476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.00476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自20世纪90年代初以来,研究人员一直在使用神经网络和其他相关的机器学习技术来为期权定价。经过三十年的机器学习技术、计算处理能力、云计算和数据可用性的改进,本文能够提供使用谷歌云的自动回归器、TensorFlowNeural Networks和XGBoost梯度提升决策树进行欧洲期权定价的比较。这三种模型在平均绝对误差方面都优于BlackScholes模型。这些结果展示了使用期权标的资产的历史数据为欧洲期权定价的潜力,特别是当使用机器学习算法学习传统参数模型没有考虑到的复杂模式时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pricing European Options with Google AutoML, TensorFlow, and XGBoost
Researchers have been using Neural Networks and other related machine-learning techniques to price options since the early 1990s. After three decades of improvements in machine learning techniques, computational processing power, cloud computing, and data availability, this paper is able to provide a comparison of using Google Cloud's AutoML Regressor, TensorFlow Neural Networks, and XGBoost Gradient Boosting Decision Trees for pricing European Options. All three types of models were able to outperform the Black Scholes Model in terms of mean absolute error. These results showcase the potential of using historical data from an option's underlying asset for pricing European options, especially when using machine learning algorithms that learn complex patterns that traditional parametric models do not take into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short-maturity Asian options in local-stochastic volatility models Automate Strategy Finding with LLM in Quant investment Valuation Model of Chinese Convertible Bonds Based on Monte Carlo Simulation Semi-analytical pricing of options written on SOFR futures A functional variational approach to pricing path dependent insurance policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1