纤颤对称揭示了细菌中逻辑计算的最小调节网络

Luis A. Álvarez-García, Wolfram Liebermeister, Ian Leifer, Hernán A. Makse
{"title":"纤颤对称揭示了细菌中逻辑计算的最小调节网络","authors":"Luis A. Álvarez-García, Wolfram Liebermeister, Ian Leifer, Hernán A. Makse","doi":"arxiv-2310.10895","DOIUrl":null,"url":null,"abstract":"Symmetry principles have proven important in physics, deep learning and\ngeometry, allowing for the reduction of complicated systems to simpler, more\ncomprehensible models that preserve the system's features of interest.\nBiological systems often show a high level of complexity and consist of a high\nnumber of interacting parts. Using symmetry fibrations, the relevant symmetries\nfor biological 'message-passing' networks, we reduced the gene regulatory\nnetworks of E. coli and B. subtilis bacteria in a way that preserves\ninformation flow and highlights the computational capabilities of the network.\nNodes that share isomorphic input trees are grouped into equivalence classes\ncalled fibers, whereby genes that receive signals with the same 'history'\nbelong to one fiber and synchronize. We further reduce the networks to its\ncomputational core by removing 'dangling ends' via k-core decomposition. The\ncomputational core of the network consists of a few strongly connected\ncomponents in which signals can cycle while signals are transmitted between\nthese 'information vortices' in a linear feed-forward manner. These components\nare in charge of decision making in the bacterial cell by employing a series of\ngenetic toggle-switch circuits that store memory, and oscillator circuits.\nThese circuits act as the central computation machine of the network, whose\noutput signals then spread to the rest of the network.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria\",\"authors\":\"Luis A. Álvarez-García, Wolfram Liebermeister, Ian Leifer, Hernán A. Makse\",\"doi\":\"arxiv-2310.10895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetry principles have proven important in physics, deep learning and\\ngeometry, allowing for the reduction of complicated systems to simpler, more\\ncomprehensible models that preserve the system's features of interest.\\nBiological systems often show a high level of complexity and consist of a high\\nnumber of interacting parts. Using symmetry fibrations, the relevant symmetries\\nfor biological 'message-passing' networks, we reduced the gene regulatory\\nnetworks of E. coli and B. subtilis bacteria in a way that preserves\\ninformation flow and highlights the computational capabilities of the network.\\nNodes that share isomorphic input trees are grouped into equivalence classes\\ncalled fibers, whereby genes that receive signals with the same 'history'\\nbelong to one fiber and synchronize. We further reduce the networks to its\\ncomputational core by removing 'dangling ends' via k-core decomposition. The\\ncomputational core of the network consists of a few strongly connected\\ncomponents in which signals can cycle while signals are transmitted between\\nthese 'information vortices' in a linear feed-forward manner. These components\\nare in charge of decision making in the bacterial cell by employing a series of\\ngenetic toggle-switch circuits that store memory, and oscillator circuits.\\nThese circuits act as the central computation machine of the network, whose\\noutput signals then spread to the rest of the network.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.10895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.10895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对称性原理在物理、深度学习和几何中已经被证明是重要的,它允许将复杂的系统简化为更简单、更容易理解的模型,从而保留系统感兴趣的特征。生物系统通常表现出高度的复杂性,并由大量相互作用的部分组成。使用对称纤维,生物“信息传递”网络的相关对称性,我们减少了大肠杆菌和枯草芽孢杆菌的基因调控网络,以保持信息流并突出网络的计算能力。共享同构输入树的节点被分组到称为纤维的等价类中,从而接收具有相同“历史”的信号的基因属于一个纤维并同步。我们通过k核分解去除“悬垂末端”,进一步将网络减少到其计算核心。网络的计算核心由几个强连接的组件组成,当信号以线性前馈方式在这些“信息漩涡”之间传输时,信号可以循环。这些元件通过使用一系列存储记忆的基因开关电路和振荡器电路,在细菌细胞中负责决策。这些电路充当网络的中央计算机器,其输出信号随后传播到网络的其余部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria
Symmetry principles have proven important in physics, deep learning and geometry, allowing for the reduction of complicated systems to simpler, more comprehensible models that preserve the system's features of interest. Biological systems often show a high level of complexity and consist of a high number of interacting parts. Using symmetry fibrations, the relevant symmetries for biological 'message-passing' networks, we reduced the gene regulatory networks of E. coli and B. subtilis bacteria in a way that preserves information flow and highlights the computational capabilities of the network. Nodes that share isomorphic input trees are grouped into equivalence classes called fibers, whereby genes that receive signals with the same 'history' belong to one fiber and synchronize. We further reduce the networks to its computational core by removing 'dangling ends' via k-core decomposition. The computational core of the network consists of a few strongly connected components in which signals can cycle while signals are transmitted between these 'information vortices' in a linear feed-forward manner. These components are in charge of decision making in the bacterial cell by employing a series of genetic toggle-switch circuits that store memory, and oscillator circuits. These circuits act as the central computation machine of the network, whose output signals then spread to the rest of the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1