定量相位图像中细胞和细胞核的无监督高通量分割

Julia Sistermanns, Ellen Emken, Gregor Weirich, Oliver Hayden, Wolfgang Utschick
{"title":"定量相位图像中细胞和细胞核的无监督高通量分割","authors":"Julia Sistermanns, Ellen Emken, Gregor Weirich, Oliver Hayden, Wolfgang Utschick","doi":"arxiv-2311.14639","DOIUrl":null,"url":null,"abstract":"In the effort to aid cytologic diagnostics by establishing automatic single\ncell screening using high throughput digital holographic microscopy for\nclinical studies thousands of images and millions of cells are captured. The\nbottleneck lies in an automatic, fast, and unsupervised segmentation technique\nthat does not limit the types of cells which might occur. We propose an\nunsupervised multistage method that segments correctly without confusing noise\nor reflections with cells and without missing cells that also includes the\ndetection of relevant inner structures, especially the cell nucleus in the\nunstained cell. In an effort to make the information reasonable and\ninterpretable for cytopathologists, we also introduce new cytoplasmic and\nnuclear features of potential help for cytologic diagnoses which exploit the\nquantitative phase information inherent to the measurement scheme. We show that\nthe segmentation provides consistently good results over many experiments on\npatient samples in a reasonable per cell analysis time.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised high-throughput segmentation of cells and cell nuclei in quantitative phase images\",\"authors\":\"Julia Sistermanns, Ellen Emken, Gregor Weirich, Oliver Hayden, Wolfgang Utschick\",\"doi\":\"arxiv-2311.14639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the effort to aid cytologic diagnostics by establishing automatic single\\ncell screening using high throughput digital holographic microscopy for\\nclinical studies thousands of images and millions of cells are captured. The\\nbottleneck lies in an automatic, fast, and unsupervised segmentation technique\\nthat does not limit the types of cells which might occur. We propose an\\nunsupervised multistage method that segments correctly without confusing noise\\nor reflections with cells and without missing cells that also includes the\\ndetection of relevant inner structures, especially the cell nucleus in the\\nunstained cell. In an effort to make the information reasonable and\\ninterpretable for cytopathologists, we also introduce new cytoplasmic and\\nnuclear features of potential help for cytologic diagnoses which exploit the\\nquantitative phase information inherent to the measurement scheme. We show that\\nthe segmentation provides consistently good results over many experiments on\\npatient samples in a reasonable per cell analysis time.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.14639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.14639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助细胞学诊断,在临床研究中使用高通量数字全息显微镜建立自动单细胞筛选,捕获了数千张图像和数百万个细胞。瓶颈在于不限制可能出现的细胞类型的自动、快速和无监督的分割技术。我们提出了一种无监督的多阶段方法,该方法可以正确分割,而不会将噪声或反射与细胞混淆,也不会丢失细胞,其中还包括检测相关的内部结构,特别是未染色细胞中的细胞核。为了使信息对细胞病理学家合理和可解释,我们还引入了新的细胞质和核特征,这些特征利用了测量方案固有的定量相位信息,可能有助于细胞学诊断。我们表明,在合理的每个细胞分析时间内,在患者样品的许多实验中,分割提供了一致的良好结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised high-throughput segmentation of cells and cell nuclei in quantitative phase images
In the effort to aid cytologic diagnostics by establishing automatic single cell screening using high throughput digital holographic microscopy for clinical studies thousands of images and millions of cells are captured. The bottleneck lies in an automatic, fast, and unsupervised segmentation technique that does not limit the types of cells which might occur. We propose an unsupervised multistage method that segments correctly without confusing noise or reflections with cells and without missing cells that also includes the detection of relevant inner structures, especially the cell nucleus in the unstained cell. In an effort to make the information reasonable and interpretable for cytopathologists, we also introduce new cytoplasmic and nuclear features of potential help for cytologic diagnoses which exploit the quantitative phase information inherent to the measurement scheme. We show that the segmentation provides consistently good results over many experiments on patient samples in a reasonable per cell analysis time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1