Tiago Knorst, Julio Vicenzi, Michael G. Jordan, Jonathan H. de Almeida, Guilherme Korol, Antonio C. S. Beck, Mateus B. Rutzig
{"title":"一个节能的多目标二进制翻译指令和数据级并行开发","authors":"Tiago Knorst, Julio Vicenzi, Michael G. Jordan, Jonathan H. de Almeida, Guilherme Korol, Antonio C. S. Beck, Mateus B. Rutzig","doi":"10.1007/s10617-021-09258-6","DOIUrl":null,"url":null,"abstract":"<p>Embedded devices are omnipresent in our daily routine, from smartphones to home appliances, that run data and control-oriented applications. To maximize the energy-performance tradeoff, data and instruction-level parallelism are exploited by using superscalar and specific accelerators. However, as such devices have severe time-to-market, binary compatibility should be maintained to avoid recurrent engineering, which is not considered in current embedded processors. This work visited a set of embedded applications showing the need for concurrent ILP and DLP exploitation. For that, we propose a Hybrid Multi-Target Binary Translator (HMTBT) to transparently exploit ILP and DLP by using a CGRA and ARM NEON engine as targeted accelerators. Results show that HMTBT transparently achieves 24% performance improvements and 54% energy savings over an OoO superscalar processor coupled to an ARM NEON engine. The proposed approach improves performance and energy in 10%, 24% over decoupled binary translators using the same accelerator with the same ILP and DLP capabilities.</p>","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"06 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An energy efficient multi-target binary translator for instruction and data level parallelism exploitation\",\"authors\":\"Tiago Knorst, Julio Vicenzi, Michael G. Jordan, Jonathan H. de Almeida, Guilherme Korol, Antonio C. S. Beck, Mateus B. Rutzig\",\"doi\":\"10.1007/s10617-021-09258-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Embedded devices are omnipresent in our daily routine, from smartphones to home appliances, that run data and control-oriented applications. To maximize the energy-performance tradeoff, data and instruction-level parallelism are exploited by using superscalar and specific accelerators. However, as such devices have severe time-to-market, binary compatibility should be maintained to avoid recurrent engineering, which is not considered in current embedded processors. This work visited a set of embedded applications showing the need for concurrent ILP and DLP exploitation. For that, we propose a Hybrid Multi-Target Binary Translator (HMTBT) to transparently exploit ILP and DLP by using a CGRA and ARM NEON engine as targeted accelerators. Results show that HMTBT transparently achieves 24% performance improvements and 54% energy savings over an OoO superscalar processor coupled to an ARM NEON engine. The proposed approach improves performance and energy in 10%, 24% over decoupled binary translators using the same accelerator with the same ILP and DLP capabilities.</p>\",\"PeriodicalId\":50594,\"journal\":{\"name\":\"Design Automation for Embedded Systems\",\"volume\":\"06 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Automation for Embedded Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10617-021-09258-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-021-09258-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An energy efficient multi-target binary translator for instruction and data level parallelism exploitation
Embedded devices are omnipresent in our daily routine, from smartphones to home appliances, that run data and control-oriented applications. To maximize the energy-performance tradeoff, data and instruction-level parallelism are exploited by using superscalar and specific accelerators. However, as such devices have severe time-to-market, binary compatibility should be maintained to avoid recurrent engineering, which is not considered in current embedded processors. This work visited a set of embedded applications showing the need for concurrent ILP and DLP exploitation. For that, we propose a Hybrid Multi-Target Binary Translator (HMTBT) to transparently exploit ILP and DLP by using a CGRA and ARM NEON engine as targeted accelerators. Results show that HMTBT transparently achieves 24% performance improvements and 54% energy savings over an OoO superscalar processor coupled to an ARM NEON engine. The proposed approach improves performance and energy in 10%, 24% over decoupled binary translators using the same accelerator with the same ILP and DLP capabilities.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.