G. Nicoud, H. Ghasemnejad, S. Srimanosaowapak, J. W. Watson
{"title":"泡沫填充增强蜂窝式横向吸振器的耐撞性","authors":"G. Nicoud, H. Ghasemnejad, S. Srimanosaowapak, J. W. Watson","doi":"10.1007/s10443-023-10181-1","DOIUrl":null,"url":null,"abstract":"<div><p>Honeycomb crash absorbers have been widely studied as energy absorption devices for use in automotive industries. However, none of these investigations have studied the side impact of empty and foam-filled honeycomb absorbers and adding stiffeners between the different layers of the corrugated sheets which are composing the honeycomb structure to analyse the structure under transverse (L-direction) impacts. In this paper, the foam-filled and reinforced honeycomb crash absorbers are investigated under axial (T) and transverse (L) loading directions. Experimental results for both empty and foam-filled specimens under quasi-static and impact loads were implemented to validate the developed finite element model. Finite element analysis (FEA) was performed to find out the crashworthiness behaviour of the structure under axial and transverse impacts according to road conditions. Finally, a new design of stiffened honeycomb crash absorber was developed and investigated to reduce the level of acceleration experienced by the passengers during the crash event. In this regard, it is concluded that all the requirements related to the energy absorption capabilities and generated deceleration under impact loading can be met by introducing an advanced method to reinforce honeycomb absorbers using stiffeners. It is also proven that the thickness of these stiffeners will not significantly influence the force levels. Due to increase of wall thickness from 1 to 3 mm, the mean crushing force increased from 129 kN to 148 kN. This growth is not sufficient as the goal is to obtain a mean crushing force of 300 kN. Thickening the stiffeners would lead to a loss of efficiency of the structure, as the small increase in mean force would not make up for the gain in mass. Thus, increasing the corrugated sheet’ thickness becomes necessary.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 2","pages":"489 - 509"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-023-10181-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Crashworthiness of Foam-Filled and Reinforced Honeycomb Crash Absorbers in Transverse Direction\",\"authors\":\"G. Nicoud, H. Ghasemnejad, S. Srimanosaowapak, J. W. Watson\",\"doi\":\"10.1007/s10443-023-10181-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Honeycomb crash absorbers have been widely studied as energy absorption devices for use in automotive industries. However, none of these investigations have studied the side impact of empty and foam-filled honeycomb absorbers and adding stiffeners between the different layers of the corrugated sheets which are composing the honeycomb structure to analyse the structure under transverse (L-direction) impacts. In this paper, the foam-filled and reinforced honeycomb crash absorbers are investigated under axial (T) and transverse (L) loading directions. Experimental results for both empty and foam-filled specimens under quasi-static and impact loads were implemented to validate the developed finite element model. Finite element analysis (FEA) was performed to find out the crashworthiness behaviour of the structure under axial and transverse impacts according to road conditions. Finally, a new design of stiffened honeycomb crash absorber was developed and investigated to reduce the level of acceleration experienced by the passengers during the crash event. In this regard, it is concluded that all the requirements related to the energy absorption capabilities and generated deceleration under impact loading can be met by introducing an advanced method to reinforce honeycomb absorbers using stiffeners. It is also proven that the thickness of these stiffeners will not significantly influence the force levels. Due to increase of wall thickness from 1 to 3 mm, the mean crushing force increased from 129 kN to 148 kN. This growth is not sufficient as the goal is to obtain a mean crushing force of 300 kN. Thickening the stiffeners would lead to a loss of efficiency of the structure, as the small increase in mean force would not make up for the gain in mass. Thus, increasing the corrugated sheet’ thickness becomes necessary.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 2\",\"pages\":\"489 - 509\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10443-023-10181-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-023-10181-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10181-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Crashworthiness of Foam-Filled and Reinforced Honeycomb Crash Absorbers in Transverse Direction
Honeycomb crash absorbers have been widely studied as energy absorption devices for use in automotive industries. However, none of these investigations have studied the side impact of empty and foam-filled honeycomb absorbers and adding stiffeners between the different layers of the corrugated sheets which are composing the honeycomb structure to analyse the structure under transverse (L-direction) impacts. In this paper, the foam-filled and reinforced honeycomb crash absorbers are investigated under axial (T) and transverse (L) loading directions. Experimental results for both empty and foam-filled specimens under quasi-static and impact loads were implemented to validate the developed finite element model. Finite element analysis (FEA) was performed to find out the crashworthiness behaviour of the structure under axial and transverse impacts according to road conditions. Finally, a new design of stiffened honeycomb crash absorber was developed and investigated to reduce the level of acceleration experienced by the passengers during the crash event. In this regard, it is concluded that all the requirements related to the energy absorption capabilities and generated deceleration under impact loading can be met by introducing an advanced method to reinforce honeycomb absorbers using stiffeners. It is also proven that the thickness of these stiffeners will not significantly influence the force levels. Due to increase of wall thickness from 1 to 3 mm, the mean crushing force increased from 129 kN to 148 kN. This growth is not sufficient as the goal is to obtain a mean crushing force of 300 kN. Thickening the stiffeners would lead to a loss of efficiency of the structure, as the small increase in mean force would not make up for the gain in mass. Thus, increasing the corrugated sheet’ thickness becomes necessary.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.