{"title":"自动体裁识别:一项调查","authors":"Taja Kuzman, Nikola Ljubešić","doi":"10.1007/s10579-023-09695-8","DOIUrl":null,"url":null,"abstract":"<p>Automatic genre identification (AGI) is a text classification task focused on genres, i.e., text categories defined by the author’s purpose, common function of the text, and the text’s conventional form. Obtaining genre information has been shown to be beneficial for a wide range of disciplines, including linguistics, corpus linguistics, computational linguistics, natural language processing, information retrieval and information security. Consequently, in the past 20 years, numerous researchers have collected genre datasets with the aim to develop an efficient genre classifier. However, their approaches to the definition of genre schemata, data collection and manual annotation vary substantially, resulting in significantly different datasets. As most AGI experiments are dataset-dependent, a sufficient understanding of the differences between the available genre datasets is of great importance for the researchers venturing into this area. In this paper, we present a detailed overview of different approaches to each of the steps of the AGI task, from the definition of the genre concept and the genre schema, to the dataset collection and annotation methods, and, finally, to machine learning strategies. Special focus is dedicated to the description of the most relevant genre schemata and datasets, and details on the availability of all of the datasets are provided. In addition, the paper presents the recent advances in machine learning approaches to automatic genre identification, and concludes with proposing the directions towards developing a stable multilingual genre classifier.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"22 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic genre identification: a survey\",\"authors\":\"Taja Kuzman, Nikola Ljubešić\",\"doi\":\"10.1007/s10579-023-09695-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Automatic genre identification (AGI) is a text classification task focused on genres, i.e., text categories defined by the author’s purpose, common function of the text, and the text’s conventional form. Obtaining genre information has been shown to be beneficial for a wide range of disciplines, including linguistics, corpus linguistics, computational linguistics, natural language processing, information retrieval and information security. Consequently, in the past 20 years, numerous researchers have collected genre datasets with the aim to develop an efficient genre classifier. However, their approaches to the definition of genre schemata, data collection and manual annotation vary substantially, resulting in significantly different datasets. As most AGI experiments are dataset-dependent, a sufficient understanding of the differences between the available genre datasets is of great importance for the researchers venturing into this area. In this paper, we present a detailed overview of different approaches to each of the steps of the AGI task, from the definition of the genre concept and the genre schema, to the dataset collection and annotation methods, and, finally, to machine learning strategies. Special focus is dedicated to the description of the most relevant genre schemata and datasets, and details on the availability of all of the datasets are provided. In addition, the paper presents the recent advances in machine learning approaches to automatic genre identification, and concludes with proposing the directions towards developing a stable multilingual genre classifier.</p>\",\"PeriodicalId\":49927,\"journal\":{\"name\":\"Language Resources and Evaluation\",\"volume\":\"22 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Resources and Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10579-023-09695-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-023-09695-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Automatic genre identification (AGI) is a text classification task focused on genres, i.e., text categories defined by the author’s purpose, common function of the text, and the text’s conventional form. Obtaining genre information has been shown to be beneficial for a wide range of disciplines, including linguistics, corpus linguistics, computational linguistics, natural language processing, information retrieval and information security. Consequently, in the past 20 years, numerous researchers have collected genre datasets with the aim to develop an efficient genre classifier. However, their approaches to the definition of genre schemata, data collection and manual annotation vary substantially, resulting in significantly different datasets. As most AGI experiments are dataset-dependent, a sufficient understanding of the differences between the available genre datasets is of great importance for the researchers venturing into this area. In this paper, we present a detailed overview of different approaches to each of the steps of the AGI task, from the definition of the genre concept and the genre schema, to the dataset collection and annotation methods, and, finally, to machine learning strategies. Special focus is dedicated to the description of the most relevant genre schemata and datasets, and details on the availability of all of the datasets are provided. In addition, the paper presents the recent advances in machine learning approaches to automatic genre identification, and concludes with proposing the directions towards developing a stable multilingual genre classifier.
期刊介绍:
Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications.
Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use.
Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.