斜坡含水层地下坝人工补水抽水二维水头分布的稳态半解析解

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Hydrogeology Journal Pub Date : 2023-11-22 DOI:10.1007/s10040-023-02734-2
Benoît Dewandel, Sandra Lanini, Nicolas Frissant
{"title":"斜坡含水层地下坝人工补水抽水二维水头分布的稳态半解析解","authors":"Benoît Dewandel, Sandra Lanini, Nicolas Frissant","doi":"10.1007/s10040-023-02734-2","DOIUrl":null,"url":null,"abstract":"<p>Underground dams are a technology for artificially increasing existing groundwater resources. They modify the natural groundwater flow in aquifers and, typically, cause hydraulic heads to rise upstream and fall downstream of the dam. However, such modifications must be defined to forecast their environmental, economic and/or social impacts. A steady-state semianalytical solution is proposed for evaluating the two-dimensional distribution of hydraulic head caused by an underground dam fully penetrating a homogeneous and inclined aquifer. The dam is impermeable, of rectangular shape, and its length concerns a limited part of the aquifer width. The developed solution is based on the method of fundamental solutions. Analysis of the semianalytical solution included sensitivity tests and a satisfactory comparison with numerical modelling. Dimensionless graphs relating the dam geometry to maximum hydraulic-head variations upstream and downstream of the dam are given. The proposed solution was applied at two field sites, giving satisfactory results. A semianalytical solution is also developed for an artificial recharge area and/or a pumping well near the underground dam. Interestingly, in the case of highly permeable aquifers, the increase in hydraulic head created by the dam may be much higher than that created by managed aquifer recharge (MAR), despite high injected flux. These semianalytical solutions will be useful applications for assessing the long-term spatial distribution of hydraulic head induced by underground dams, or for testing the combination of dams with pumping wells or MAR technology. They are intended to guide the design of such structures, especially to quickly test various configurations.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-state semianalytical solutions for assessing the two-dimensional hydraulic head distribution induced by an underground dam in a sloping aquifer with artificial aquifer recharge and pumping\",\"authors\":\"Benoît Dewandel, Sandra Lanini, Nicolas Frissant\",\"doi\":\"10.1007/s10040-023-02734-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Underground dams are a technology for artificially increasing existing groundwater resources. They modify the natural groundwater flow in aquifers and, typically, cause hydraulic heads to rise upstream and fall downstream of the dam. However, such modifications must be defined to forecast their environmental, economic and/or social impacts. A steady-state semianalytical solution is proposed for evaluating the two-dimensional distribution of hydraulic head caused by an underground dam fully penetrating a homogeneous and inclined aquifer. The dam is impermeable, of rectangular shape, and its length concerns a limited part of the aquifer width. The developed solution is based on the method of fundamental solutions. Analysis of the semianalytical solution included sensitivity tests and a satisfactory comparison with numerical modelling. Dimensionless graphs relating the dam geometry to maximum hydraulic-head variations upstream and downstream of the dam are given. The proposed solution was applied at two field sites, giving satisfactory results. A semianalytical solution is also developed for an artificial recharge area and/or a pumping well near the underground dam. Interestingly, in the case of highly permeable aquifers, the increase in hydraulic head created by the dam may be much higher than that created by managed aquifer recharge (MAR), despite high injected flux. These semianalytical solutions will be useful applications for assessing the long-term spatial distribution of hydraulic head induced by underground dams, or for testing the combination of dams with pumping wells or MAR technology. They are intended to guide the design of such structures, especially to quickly test various configurations.</p>\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-023-02734-2\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-023-02734-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

地下坝是一种人为增加现有地下水资源的技术。它们改变了含水层中的天然地下水流动,通常会导致水头在大坝的上游上升,在下游下降。但是,必须确定这种修改,以预测其环境、经济和/或社会影响。提出了地下坝完全侵彻均匀倾斜含水层时水头二维分布的稳态半解析解。大坝是不透水的,呈矩形,其长度涉及含水层宽度的有限部分。所开发的解是基于基本解的方法。半解析解的分析包括灵敏度测试和与数值模拟的满意比较。给出了大坝几何形状与大坝上游和下游最大水头变化的无因次图。该方案在两个现场进行了应用,取得了满意的效果。对于地下坝附近的人工补给区和/或抽水井,也开发了半解析解。有趣的是,在高渗透性含水层的情况下,尽管注入通量很高,但大坝产生的水力水头的增加可能远远高于管理含水层补给(MAR)产生的水头。这些半解析解对于评估地下大坝引起的水头的长期空间分布,或测试大坝与抽水井或MAR技术的组合将是有用的应用。它们旨在指导此类结构的设计,特别是快速测试各种配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steady-state semianalytical solutions for assessing the two-dimensional hydraulic head distribution induced by an underground dam in a sloping aquifer with artificial aquifer recharge and pumping

Underground dams are a technology for artificially increasing existing groundwater resources. They modify the natural groundwater flow in aquifers and, typically, cause hydraulic heads to rise upstream and fall downstream of the dam. However, such modifications must be defined to forecast their environmental, economic and/or social impacts. A steady-state semianalytical solution is proposed for evaluating the two-dimensional distribution of hydraulic head caused by an underground dam fully penetrating a homogeneous and inclined aquifer. The dam is impermeable, of rectangular shape, and its length concerns a limited part of the aquifer width. The developed solution is based on the method of fundamental solutions. Analysis of the semianalytical solution included sensitivity tests and a satisfactory comparison with numerical modelling. Dimensionless graphs relating the dam geometry to maximum hydraulic-head variations upstream and downstream of the dam are given. The proposed solution was applied at two field sites, giving satisfactory results. A semianalytical solution is also developed for an artificial recharge area and/or a pumping well near the underground dam. Interestingly, in the case of highly permeable aquifers, the increase in hydraulic head created by the dam may be much higher than that created by managed aquifer recharge (MAR), despite high injected flux. These semianalytical solutions will be useful applications for assessing the long-term spatial distribution of hydraulic head induced by underground dams, or for testing the combination of dams with pumping wells or MAR technology. They are intended to guide the design of such structures, especially to quickly test various configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrogeology Journal
Hydrogeology Journal 地学-地球科学综合
CiteScore
5.40
自引率
7.10%
发文量
128
审稿时长
6 months
期刊介绍: Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries. Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.
期刊最新文献
Estimation of groundwater flux with active distributed temperature sensing and the finite volume point dilution method: a field comparison Can small buried-valley aquifers be an emergency water source on the Canadian Prairies? The aquifer system of the Salado-Juramento fluvial megafan distal plain, Argentina: an integrated approach of geological, hydrogeological and numerical models Horizon-assisted lithologic modeling: understanding Mississippi Embayment and Coastal Lowlands aquifer systems in Louisiana and southwestern Mississippi, USA Deciphering the mechanism of groundwater temperature changes associated with longwall mining in a coalfield, China, using the extreme gradient boosting method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1