{"title":"轻质无co共晶高熵合金,具有高强度和高延展性","authors":"Shuai Feng, Shuai Guan, Xiangkui Liu, Siyuan Peng, Kewei Dong, Yang Yang, Xinsheng Chen, Yuzheng Liang, Qipeng Wang, Yanfang Liu, Yong Peng, Kehong Wang, Wen Chen, Jian Kong","doi":"10.1080/21663831.2023.2284328","DOIUrl":null,"url":null,"abstract":"We report a cast light-weight dual-phase eutectic high-entropy alloy (EHEA) of Ni49Fe28Al17V6 that comprises of alternating FCC and ordered B2 lamellae. Such lamellar EHEA exhibits a superior tensi...A novel cast Ni49Fe28Al17V6 eutectic high-entropy alloy comprised of FCC and B2 nanolamellae exhibits a remarkable combination of tensile strength and uniform elongation, well surpassing those of o...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"40 11 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Co-free eutectic high-entropy alloy with high strength and ductility by casting\",\"authors\":\"Shuai Feng, Shuai Guan, Xiangkui Liu, Siyuan Peng, Kewei Dong, Yang Yang, Xinsheng Chen, Yuzheng Liang, Qipeng Wang, Yanfang Liu, Yong Peng, Kehong Wang, Wen Chen, Jian Kong\",\"doi\":\"10.1080/21663831.2023.2284328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a cast light-weight dual-phase eutectic high-entropy alloy (EHEA) of Ni49Fe28Al17V6 that comprises of alternating FCC and ordered B2 lamellae. Such lamellar EHEA exhibits a superior tensi...A novel cast Ni49Fe28Al17V6 eutectic high-entropy alloy comprised of FCC and B2 nanolamellae exhibits a remarkable combination of tensile strength and uniform elongation, well surpassing those of o...\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"40 11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2023.2284328\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2284328","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lightweight Co-free eutectic high-entropy alloy with high strength and ductility by casting
We report a cast light-weight dual-phase eutectic high-entropy alloy (EHEA) of Ni49Fe28Al17V6 that comprises of alternating FCC and ordered B2 lamellae. Such lamellar EHEA exhibits a superior tensi...A novel cast Ni49Fe28Al17V6 eutectic high-entropy alloy comprised of FCC and B2 nanolamellae exhibits a remarkable combination of tensile strength and uniform elongation, well surpassing those of o...
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.