{"title":"负责任的推荐服务与区块链授权异步联邦学习","authors":"Waqar Ali, Rajesh Kumar, Xiangmin Zhou, Jie Shao","doi":"10.1145/3633520","DOIUrl":null,"url":null,"abstract":"<p>Privacy and trust are highly demanding in practical recommendation engines. Although Federated Learning (FL) has significantly addressed privacy concerns, commercial operators are still worried about several technical challenges while bringing FL into production. Additionally, classical FL has several intrinsic operational limitations such as single-point failure, data and model tampering, and heterogenic clients participating in the FL process. To address these challenges in practical recommenders, we propose a responsible recommendation generation framework based on blockchain-empowered asynchronous FL that can be adopted for any model-based recommender system. In standard FL settings, we build an additional aggregation layer in which multiple trusted nodes guided by a mediator component perform gradient aggregation to achieve an optimal model locally in a parallel fashion. The mediator partitions users into <i>K</i> clusters, and each cluster is represented by a cluster head. Once a cluster gets semi-global convergence, the cluster head transmits model gradients to the FL server for global aggregation. Additionally, the trusted cluster heads are responsible to submit the converged semi-global model to a blockchain to ensure tamper resilience. In our settings, an additional mediator component works like an independent observer that monitors the performance of each cluster head, updates a reward score, and records it into a digital ledger. Finally, evaluation results on three diversified benchmarks illustrate that the recommendation performance on selected measures is considerably comparable with the standard and federated version of a well-known neural collaborative filtering recommender.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"26 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responsible Recommendation Services with Blockchain Empowered Asynchronous Federated Learning\",\"authors\":\"Waqar Ali, Rajesh Kumar, Xiangmin Zhou, Jie Shao\",\"doi\":\"10.1145/3633520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Privacy and trust are highly demanding in practical recommendation engines. Although Federated Learning (FL) has significantly addressed privacy concerns, commercial operators are still worried about several technical challenges while bringing FL into production. Additionally, classical FL has several intrinsic operational limitations such as single-point failure, data and model tampering, and heterogenic clients participating in the FL process. To address these challenges in practical recommenders, we propose a responsible recommendation generation framework based on blockchain-empowered asynchronous FL that can be adopted for any model-based recommender system. In standard FL settings, we build an additional aggregation layer in which multiple trusted nodes guided by a mediator component perform gradient aggregation to achieve an optimal model locally in a parallel fashion. The mediator partitions users into <i>K</i> clusters, and each cluster is represented by a cluster head. Once a cluster gets semi-global convergence, the cluster head transmits model gradients to the FL server for global aggregation. Additionally, the trusted cluster heads are responsible to submit the converged semi-global model to a blockchain to ensure tamper resilience. In our settings, an additional mediator component works like an independent observer that monitors the performance of each cluster head, updates a reward score, and records it into a digital ledger. Finally, evaluation results on three diversified benchmarks illustrate that the recommendation performance on selected measures is considerably comparable with the standard and federated version of a well-known neural collaborative filtering recommender.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3633520\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3633520","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Responsible Recommendation Services with Blockchain Empowered Asynchronous Federated Learning
Privacy and trust are highly demanding in practical recommendation engines. Although Federated Learning (FL) has significantly addressed privacy concerns, commercial operators are still worried about several technical challenges while bringing FL into production. Additionally, classical FL has several intrinsic operational limitations such as single-point failure, data and model tampering, and heterogenic clients participating in the FL process. To address these challenges in practical recommenders, we propose a responsible recommendation generation framework based on blockchain-empowered asynchronous FL that can be adopted for any model-based recommender system. In standard FL settings, we build an additional aggregation layer in which multiple trusted nodes guided by a mediator component perform gradient aggregation to achieve an optimal model locally in a parallel fashion. The mediator partitions users into K clusters, and each cluster is represented by a cluster head. Once a cluster gets semi-global convergence, the cluster head transmits model gradients to the FL server for global aggregation. Additionally, the trusted cluster heads are responsible to submit the converged semi-global model to a blockchain to ensure tamper resilience. In our settings, an additional mediator component works like an independent observer that monitors the performance of each cluster head, updates a reward score, and records it into a digital ledger. Finally, evaluation results on three diversified benchmarks illustrate that the recommendation performance on selected measures is considerably comparable with the standard and federated version of a well-known neural collaborative filtering recommender.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.