{"title":"基于深度强化学习的串通车辆交通信号控制系统对抗性攻击","authors":"Ao Qu, Yihong Tang, Wei Ma","doi":"10.1145/3625236","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancements of Internet of Things (IoT) and Artificial Intelligence (AI) have catalyzed the development of adaptive traffic control systems (ATCS) for smart cities. In particular, deep reinforcement learning (DRL) models produce state-of-the-art performance and have great potential for practical applications. In the existing DRL-based ATCS, the controlled signals collect traffic state information from nearby vehicles, and then optimal actions (e.g., switching phases) can be determined based on the collected information. The DRL models fully “trust” that vehicles are sending the true information to the traffic signals, making the ATCS vulnerable to adversarial attacks with falsified information. In view of this, this article first time formulates a novel task in which a group of vehicles can cooperatively send falsified information to “cheat” DRL-based ATCS in order to save their total travel time. To solve the proposed task, we develop <span>CollusionVeh</span>, a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism. We employ our framework to attack established DRL-based ATCS and demonstrate that the total travel time for the colluding vehicles can be significantly reduced with a reasonable number of learning episodes, and the colluding effect will decrease if the number of colluding vehicles increases. Additionally, insights and suggestions for the real-world deployment of DRL-based ATCS are provided. The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"126 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial Attacks on Deep Reinforcement Learning-based Traffic Signal Control Systems with Colluding Vehicles\",\"authors\":\"Ao Qu, Yihong Tang, Wei Ma\",\"doi\":\"10.1145/3625236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid advancements of Internet of Things (IoT) and Artificial Intelligence (AI) have catalyzed the development of adaptive traffic control systems (ATCS) for smart cities. In particular, deep reinforcement learning (DRL) models produce state-of-the-art performance and have great potential for practical applications. In the existing DRL-based ATCS, the controlled signals collect traffic state information from nearby vehicles, and then optimal actions (e.g., switching phases) can be determined based on the collected information. The DRL models fully “trust” that vehicles are sending the true information to the traffic signals, making the ATCS vulnerable to adversarial attacks with falsified information. In view of this, this article first time formulates a novel task in which a group of vehicles can cooperatively send falsified information to “cheat” DRL-based ATCS in order to save their total travel time. To solve the proposed task, we develop <span>CollusionVeh</span>, a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism. We employ our framework to attack established DRL-based ATCS and demonstrate that the total travel time for the colluding vehicles can be significantly reduced with a reasonable number of learning episodes, and the colluding effect will decrease if the number of colluding vehicles increases. Additionally, insights and suggestions for the real-world deployment of DRL-based ATCS are provided. The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3625236\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3625236","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adversarial Attacks on Deep Reinforcement Learning-based Traffic Signal Control Systems with Colluding Vehicles
The rapid advancements of Internet of Things (IoT) and Artificial Intelligence (AI) have catalyzed the development of adaptive traffic control systems (ATCS) for smart cities. In particular, deep reinforcement learning (DRL) models produce state-of-the-art performance and have great potential for practical applications. In the existing DRL-based ATCS, the controlled signals collect traffic state information from nearby vehicles, and then optimal actions (e.g., switching phases) can be determined based on the collected information. The DRL models fully “trust” that vehicles are sending the true information to the traffic signals, making the ATCS vulnerable to adversarial attacks with falsified information. In view of this, this article first time formulates a novel task in which a group of vehicles can cooperatively send falsified information to “cheat” DRL-based ATCS in order to save their total travel time. To solve the proposed task, we develop CollusionVeh, a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism. We employ our framework to attack established DRL-based ATCS and demonstrate that the total travel time for the colluding vehicles can be significantly reduced with a reasonable number of learning episodes, and the colluding effect will decrease if the number of colluding vehicles increases. Additionally, insights and suggestions for the real-world deployment of DRL-based ATCS are provided. The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.