{"title":"用于高灵敏度水质监测的大周期正弦型等离子体光栅","authors":"Vaswati Biswas , R. Vijaya","doi":"10.1016/j.photonics.2023.101199","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Subwavelength-thick modulation of surface profile of a dielectric<span> layer combined with a nanometer-thick metallic coating on it can be used for highly sensitive refractive index sensing using the concept of </span></span>surface plasmon resonance. The performance efficiency of a 1D sinusoidal plasmonic grating of higher periodicity made of polymethylmethacrylate with gold coating on it is evaluated for monitoring water quality. The sinusoidal structure is fabricated by the cost-effective soft imprint lithography technique using a commercially available compact disk as master. Even though the master has a step profile, the solution-based technique aids in achieving the sinusoidal profile. The higher periodicity aids in attaining a higher sensitivity of 1533 nm/RIU at normal incidence and also provides a broad wavelength detection regime that can be controlled by the incidence angle. As the sinusoidal grating supports only the fundamental mode of the surface plasmon, it allows for more precise detection of any analyte. The optimized parameters for the structure are obtained through </span>finite element method calculation.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101199"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-period plasmonic grating with sinusoidal profile for monitoring water quality with high sensitivity\",\"authors\":\"Vaswati Biswas , R. Vijaya\",\"doi\":\"10.1016/j.photonics.2023.101199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Subwavelength-thick modulation of surface profile of a dielectric<span> layer combined with a nanometer-thick metallic coating on it can be used for highly sensitive refractive index sensing using the concept of </span></span>surface plasmon resonance. The performance efficiency of a 1D sinusoidal plasmonic grating of higher periodicity made of polymethylmethacrylate with gold coating on it is evaluated for monitoring water quality. The sinusoidal structure is fabricated by the cost-effective soft imprint lithography technique using a commercially available compact disk as master. Even though the master has a step profile, the solution-based technique aids in achieving the sinusoidal profile. The higher periodicity aids in attaining a higher sensitivity of 1533 nm/RIU at normal incidence and also provides a broad wavelength detection regime that can be controlled by the incidence angle. As the sinusoidal grating supports only the fundamental mode of the surface plasmon, it allows for more precise detection of any analyte. The optimized parameters for the structure are obtained through </span>finite element method calculation.</p></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"58 \",\"pages\":\"Article 101199\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441023000937\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441023000937","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Large-period plasmonic grating with sinusoidal profile for monitoring water quality with high sensitivity
Subwavelength-thick modulation of surface profile of a dielectric layer combined with a nanometer-thick metallic coating on it can be used for highly sensitive refractive index sensing using the concept of surface plasmon resonance. The performance efficiency of a 1D sinusoidal plasmonic grating of higher periodicity made of polymethylmethacrylate with gold coating on it is evaluated for monitoring water quality. The sinusoidal structure is fabricated by the cost-effective soft imprint lithography technique using a commercially available compact disk as master. Even though the master has a step profile, the solution-based technique aids in achieving the sinusoidal profile. The higher periodicity aids in attaining a higher sensitivity of 1533 nm/RIU at normal incidence and also provides a broad wavelength detection regime that can be controlled by the incidence angle. As the sinusoidal grating supports only the fundamental mode of the surface plasmon, it allows for more precise detection of any analyte. The optimized parameters for the structure are obtained through finite element method calculation.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.