基于折叠光学的石英增强光声光热混合光谱学

IF 7.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Photoacoustics Pub Date : 2023-12-07 DOI:10.1016/j.pacs.2023.100580
Ruyue Cui , Hongpeng Wu , Frank K. Tittel, Vincenzo Spagnolo, Weidong Chen, Lei Dong
{"title":"基于折叠光学的石英增强光声光热混合光谱学","authors":"Ruyue Cui ,&nbsp;Hongpeng Wu ,&nbsp;Frank K. Tittel,&nbsp;Vincenzo Spagnolo,&nbsp;Weidong Chen,&nbsp;Lei Dong","doi":"10.1016/j.pacs.2023.100580","DOIUrl":null,"url":null,"abstract":"<div><p>Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy (FO-QEPA-PTS) is reported for the first time. In FO-QEPA-PTS, the detection of the photoacoustic and photothermal hybrid signal is achieved through the use of a custom quartz tuning fork (QTF), thereby mitigating the issue of resonant frequency mismatch typically encountered in quartz-enhanced photoacoustic-photothermal spectroscopy employing multiple QTFs. A multi-laser beam, created by a multi-pass cell (MPC) with a designed single-line spot pattern, partially strikes the inner edge of the QTF and partially passes through the prong of the QTF, thereby generating photoacoustic and photothermal hybrid signals. To assess the performance of FO-QEPA-PTS, 1 % acetylene is selected as the analyte gas and the 2<em>f</em> signals produced by the photoacoustic, the photothermal, and their hybrid effects are measured. Comparative analysis against QEPAS and QEPTS reveals signal gain factors of ∼ 79 and ∼ 14, respectively, when these laser beams created by MPC excite the QTF operating at fundamental resonance mode in phase. In the FO-QEPA-PTS signal, the proportions of the photoacoustic and the photothermal effects induced by the multiple beams are ∼7 % and 93 %, respectively.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"35 ","pages":"Article 100580"},"PeriodicalIF":7.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597923001337/pdfft?md5=3480d2cbe0d09e68762d781c222c3d8c&pid=1-s2.0-S2213597923001337-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy\",\"authors\":\"Ruyue Cui ,&nbsp;Hongpeng Wu ,&nbsp;Frank K. Tittel,&nbsp;Vincenzo Spagnolo,&nbsp;Weidong Chen,&nbsp;Lei Dong\",\"doi\":\"10.1016/j.pacs.2023.100580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy (FO-QEPA-PTS) is reported for the first time. In FO-QEPA-PTS, the detection of the photoacoustic and photothermal hybrid signal is achieved through the use of a custom quartz tuning fork (QTF), thereby mitigating the issue of resonant frequency mismatch typically encountered in quartz-enhanced photoacoustic-photothermal spectroscopy employing multiple QTFs. A multi-laser beam, created by a multi-pass cell (MPC) with a designed single-line spot pattern, partially strikes the inner edge of the QTF and partially passes through the prong of the QTF, thereby generating photoacoustic and photothermal hybrid signals. To assess the performance of FO-QEPA-PTS, 1 % acetylene is selected as the analyte gas and the 2<em>f</em> signals produced by the photoacoustic, the photothermal, and their hybrid effects are measured. Comparative analysis against QEPAS and QEPTS reveals signal gain factors of ∼ 79 and ∼ 14, respectively, when these laser beams created by MPC excite the QTF operating at fundamental resonance mode in phase. In the FO-QEPA-PTS signal, the proportions of the photoacoustic and the photothermal effects induced by the multiple beams are ∼7 % and 93 %, respectively.</p></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"35 \",\"pages\":\"Article 100580\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213597923001337/pdfft?md5=3480d2cbe0d09e68762d781c222c3d8c&pid=1-s2.0-S2213597923001337-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597923001337\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597923001337","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

首次报道了基于折叠光学的石英增强光声光热混合光谱(fo - qpa - pts)。在fo - qpa - pts中,光声和光热混合信号的检测是通过使用定制的石英音叉(QTF)来实现的,从而减轻了使用多个QTF的石英增强光声光热光谱通常遇到的共振频率不匹配问题。通过设计单线光斑模式的多通单元(MPC)产生的多束激光,部分击中QTF的内缘,部分穿过QTF的尖头,从而产生光声和光热混合信号。为了评估FO-QEPA-PTS的性能,选择1%乙炔作为分析气体,测量了光声、光热产生的2f信号及其混合效应。与QEPAS和QEPTS的对比分析表明,当MPC产生的激光束在相位上激发工作在基共振模式的QTF时,信号增益因子分别为~ 79和~ 14。在fo - qpa - pts信号中,多光束诱导的光声效应和光热效应分别占~ 7%和93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy

Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy (FO-QEPA-PTS) is reported for the first time. In FO-QEPA-PTS, the detection of the photoacoustic and photothermal hybrid signal is achieved through the use of a custom quartz tuning fork (QTF), thereby mitigating the issue of resonant frequency mismatch typically encountered in quartz-enhanced photoacoustic-photothermal spectroscopy employing multiple QTFs. A multi-laser beam, created by a multi-pass cell (MPC) with a designed single-line spot pattern, partially strikes the inner edge of the QTF and partially passes through the prong of the QTF, thereby generating photoacoustic and photothermal hybrid signals. To assess the performance of FO-QEPA-PTS, 1 % acetylene is selected as the analyte gas and the 2f signals produced by the photoacoustic, the photothermal, and their hybrid effects are measured. Comparative analysis against QEPAS and QEPTS reveals signal gain factors of ∼ 79 and ∼ 14, respectively, when these laser beams created by MPC excite the QTF operating at fundamental resonance mode in phase. In the FO-QEPA-PTS signal, the proportions of the photoacoustic and the photothermal effects induced by the multiple beams are ∼7 % and 93 %, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photoacoustics
Photoacoustics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍: The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms. Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring. Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed. These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.
期刊最新文献
Quantitative volumetric photoacoustic assessment of vasoconstriction by topical corticosteroid application in mice skin Spiral volumetric optoacoustic and ultrasound (SVOPUS) tomography of mice Miniature optical fiber photoacoustic spectroscopy gas sensor based on a 3D micro-printed planar-spiral spring optomechanical resonator Calibration-free infrared absorption spectroscopy using cantilever-enhanced photoacoustic detection of the optical power Application of multispectral optoacoustic tomography for lower limb musculoskeletal sports injuries in adults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1