MiR-4763-3p通过靶向IL10RA加速脂多糖诱导的心肌细胞凋亡和炎症反应

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-01 DOI:10.1007/s10616-023-00607-w
Lei Yang, Qian Dai, Xiaoming Bao, Wang Li, Jie Liu
{"title":"MiR-4763-3p通过靶向IL10RA加速脂多糖诱导的心肌细胞凋亡和炎症反应","authors":"Lei Yang, Qian Dai, Xiaoming Bao, Wang Li, Jie Liu","doi":"10.1007/s10616-023-00607-w","DOIUrl":null,"url":null,"abstract":"<p>In order to investigate miR-4763-3p and associated genes’ roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA\",\"authors\":\"Lei Yang, Qian Dai, Xiaoming Bao, Wang Li, Jie Liu\",\"doi\":\"10.1007/s10616-023-00607-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to investigate miR-4763-3p and associated genes’ roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-023-00607-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00607-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了研究miR-4763-3p及相关基因在心心炎中的作用,我们将AC16细胞系分为LPS + miR-4763-3p抑制剂、LPS + NC抑制剂、LPS + miR-4763-3p抑制剂+ si-IL10RA和NC组,采用Q-PCR检测miR-4763-3p是否表达;使用Targetscan、Genecards和MiRDB来估计miR-4763-3p靶标;Targetscan用于显示结合位点。Western blot检测Bax、Bcl-2和IL10RA的表达。CCK8和流式细胞术分别处理细胞增殖和细胞凋亡。利用Transwell试验证实了迁移和入侵。采用ELISA法测定细胞培养上清中IL-6、IL-1ß、IL-10、TGF-ß的含量。暴露于LPS后,心肌细胞表达更多的miR-4763-3p。MiR-4763-3p抑制剂加速了lps处理心肌细胞的增殖、迁移和侵袭行为,同时降低了lps处理心肌细胞的凋亡率。MiR-4763-3p抑制剂通过上调lps处理的心肌细胞Bax表达和下调Bcl-2水平来减轻炎症反应。在LPS处理的心肌细胞中,MiR-4763-3p表达升高。miR-4763-3p抑制剂恢复了其作用。MiR-4763-3p通过靶向IL10RA加速脂多糖诱导的心肌细胞凋亡和炎症反应,可能是心肌炎的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA

In order to investigate miR-4763-3p and associated genes’ roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1