基于数据和知识驱动方法的行人意图估计和轨迹预测

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2023-11-29 DOI:10.1049/itr2.12453
Jincao Zhou, Xin Bai, Weiping Fu, Benyu Ning, Rui Li
{"title":"基于数据和知识驱动方法的行人意图估计和轨迹预测","authors":"Jincao Zhou,&nbsp;Xin Bai,&nbsp;Weiping Fu,&nbsp;Benyu Ning,&nbsp;Rui Li","doi":"10.1049/itr2.12453","DOIUrl":null,"url":null,"abstract":"<p>With the development of deep learning technology, the problem of data-driven trajectory prediction and intention recognition has been widely studied. However, the pedestrian trajectory prediction and intention recognition methods based solely on data-driven have weak data description ability and black-box characteristics, which cannot reason about pedestrian crossing intention and predict pedestrian crossing trajectory as humans do. To address the above problems, the authors proposed a data and knowledge-driven pedestrian intention estimation and trajectory prediction method by imitating human cognitive mechanisms. In the pedestrian intention inference process, the authors adopted the knowledge-driven method. As a first step, the authors built a knowledge graph of pedestrian crossing scenes, and then paired it with a Bayesian network to estimate pedestrian crossing intentions. In the pedestrian trajectory prediction process, the authors used a data-driven approach, combining pedestrian crossing trajectory features and knowledge-based pedestrian intentions. Experiments show that all evaluation metrics of pedestrian trajectory prediction were improved after adding pedestrian intentions obtained by knowledge-driven.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12453","citationCount":"0","resultStr":"{\"title\":\"Pedestrian intention estimation and trajectory prediction based on data and knowledge-driven method\",\"authors\":\"Jincao Zhou,&nbsp;Xin Bai,&nbsp;Weiping Fu,&nbsp;Benyu Ning,&nbsp;Rui Li\",\"doi\":\"10.1049/itr2.12453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the development of deep learning technology, the problem of data-driven trajectory prediction and intention recognition has been widely studied. However, the pedestrian trajectory prediction and intention recognition methods based solely on data-driven have weak data description ability and black-box characteristics, which cannot reason about pedestrian crossing intention and predict pedestrian crossing trajectory as humans do. To address the above problems, the authors proposed a data and knowledge-driven pedestrian intention estimation and trajectory prediction method by imitating human cognitive mechanisms. In the pedestrian intention inference process, the authors adopted the knowledge-driven method. As a first step, the authors built a knowledge graph of pedestrian crossing scenes, and then paired it with a Bayesian network to estimate pedestrian crossing intentions. In the pedestrian trajectory prediction process, the authors used a data-driven approach, combining pedestrian crossing trajectory features and knowledge-based pedestrian intentions. Experiments show that all evaluation metrics of pedestrian trajectory prediction were improved after adding pedestrian intentions obtained by knowledge-driven.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12453\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12453\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12453","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习技术的发展,数据驱动的轨迹预测和意图识别问题得到了广泛的研究。然而,单纯基于数据驱动的行人轨迹预测和意图识别方法存在数据描述能力弱和黑箱特征,无法像人类那样推理行人过马路意图和预测行人过马路轨迹。针对上述问题,作者提出了一种模仿人类认知机制的数据和知识驱动的行人意图估计和轨迹预测方法。在行人意图推理过程中,作者采用了知识驱动的方法。首先,作者建立了行人过马路场景的知识图谱,然后将其与贝叶斯网络进行配对,估计行人过马路的意图。在行人轨迹预测过程中,作者采用数据驱动的方法,将行人过马路轨迹特征与基于知识的行人意图相结合。实验表明,加入知识驱动的行人意图后,行人轨迹预测的所有评价指标都得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pedestrian intention estimation and trajectory prediction based on data and knowledge-driven method

With the development of deep learning technology, the problem of data-driven trajectory prediction and intention recognition has been widely studied. However, the pedestrian trajectory prediction and intention recognition methods based solely on data-driven have weak data description ability and black-box characteristics, which cannot reason about pedestrian crossing intention and predict pedestrian crossing trajectory as humans do. To address the above problems, the authors proposed a data and knowledge-driven pedestrian intention estimation and trajectory prediction method by imitating human cognitive mechanisms. In the pedestrian intention inference process, the authors adopted the knowledge-driven method. As a first step, the authors built a knowledge graph of pedestrian crossing scenes, and then paired it with a Bayesian network to estimate pedestrian crossing intentions. In the pedestrian trajectory prediction process, the authors used a data-driven approach, combining pedestrian crossing trajectory features and knowledge-based pedestrian intentions. Experiments show that all evaluation metrics of pedestrian trajectory prediction were improved after adding pedestrian intentions obtained by knowledge-driven.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis ADWNet: An improved detector based on YOLOv8 for application in adverse weather for autonomous driving Creep slope estimation for assessing adhesion in the wheel/rail contact Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach Driver distraction and fatigue detection in images using ME-YOLOv8 algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1