太阳对流区的磁场

IF 20.9 1区 物理与天体物理 Living Reviews in Solar Physics Pub Date : 2021-11-03 DOI:10.1007/s41116-021-00031-2
Yuhong Fan
{"title":"太阳对流区的磁场","authors":"Yuhong Fan","doi":"10.1007/s41116-021-00031-2","DOIUrl":null,"url":null,"abstract":"<div><p>It has been a prevailing picture that active regions on the solar surface originate from a strong toroidal magnetic field stored in the overshoot region at the base of the solar convection zone, generated by a deep seated solar dynamo mechanism. This article reviews the studies in regard to how the toroidal magnetic field can destabilize and rise through the convection zone to form the observed solar active regions at the surface. Furthermore, new results from the global simulations of the convective dynamos, and from the near-surface layer simulations of active region formation, together with helioseismic investigations of the pre-emergence active regions, are calling into question the picture of active regions as buoyantly rising flux tubes originating from the bottom of the convection zone. This article also gives a review on these new developments.</p></div>","PeriodicalId":49147,"journal":{"name":"Living Reviews in Solar Physics","volume":"18 1","pages":""},"PeriodicalIF":20.9000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41116-021-00031-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic fields in the solar convection zone\",\"authors\":\"Yuhong Fan\",\"doi\":\"10.1007/s41116-021-00031-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has been a prevailing picture that active regions on the solar surface originate from a strong toroidal magnetic field stored in the overshoot region at the base of the solar convection zone, generated by a deep seated solar dynamo mechanism. This article reviews the studies in regard to how the toroidal magnetic field can destabilize and rise through the convection zone to form the observed solar active regions at the surface. Furthermore, new results from the global simulations of the convective dynamos, and from the near-surface layer simulations of active region formation, together with helioseismic investigations of the pre-emergence active regions, are calling into question the picture of active regions as buoyantly rising flux tubes originating from the bottom of the convection zone. This article also gives a review on these new developments.</p></div>\",\"PeriodicalId\":49147,\"journal\":{\"name\":\"Living Reviews in Solar Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":20.9000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41116-021-00031-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41116-021-00031-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-021-00031-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种流行的观点认为,太阳表面的活动区域是由深层太阳发电机机制产生的,储存在太阳对流区底部超调区域的强环形磁场引起的。本文综述了环向磁场如何在对流区不稳定和上升,从而在地表形成观测到的太阳活动区的研究。此外,对对流发电机的全球模拟和对活动区域形成的近地表模拟的新结果,以及对出现前活动区域的日震调查,都对活动区域是源自对流区底部的浮力上升通量管的说法提出了质疑。本文还对这些新进展作了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic fields in the solar convection zone

It has been a prevailing picture that active regions on the solar surface originate from a strong toroidal magnetic field stored in the overshoot region at the base of the solar convection zone, generated by a deep seated solar dynamo mechanism. This article reviews the studies in regard to how the toroidal magnetic field can destabilize and rise through the convection zone to form the observed solar active regions at the surface. Furthermore, new results from the global simulations of the convective dynamos, and from the near-surface layer simulations of active region formation, together with helioseismic investigations of the pre-emergence active regions, are calling into question the picture of active regions as buoyantly rising flux tubes originating from the bottom of the convection zone. This article also gives a review on these new developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics ASTRONOMY & ASTROPHYSICS-
自引率
1.40%
发文量
3
期刊介绍: Living Reviews in Solar Physics, a platinum open-access journal, publishes invited reviews covering research across all areas of solar and heliospheric physics. It distinguishes itself by maintaining a collection of high-quality reviews regularly updated by the authors. Established in 2004, it was founded by the Max Planck Institute for Solar System Research (MPS). "Living Reviews®" is a registered trademark of Springer International Publishing AG.
期刊最新文献
Machine learning in solar physics Models for the long-term variations of solar activity A history of solar activity over millennia Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes Surface and interior meridional circulation in the Sun
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1