Xiao-song Zhang, Xue-qin Ji, Lei-qiang Chen, Li-jin Gao, Hong-bo Huang, Fang-wen Hong
{"title":"空腔内空气层波型特征及多种影响因素影响的数值研究","authors":"Xiao-song Zhang, Xue-qin Ji, Lei-qiang Chen, Li-jin Gao, Hong-bo Huang, Fang-wen Hong","doi":"10.1007/s42241-023-0066-3","DOIUrl":null,"url":null,"abstract":"<div><p>Air-layer drag reduction (ALDR) technology for ship energy saving is getting more and more attention in recent years because of the outstanding drag reduction effect. In order to promote practical application, it is necessary to fully understand the two phase flow characteristics of the air layer. Recent experimental studies have shown that the surface of the air layer presents wave pattern, which has an important influence on its damage risk. However, it is difficult to measure the wave pattern quantificationally due to the interference of equipment. The main goal of the present paper is to investigate the wave pattern characteristic of air layer in cavity using numerical simulation method. On this basis, the effect of flow and geometric influence factors are discussed to understand the key control conditions. A computational fluid dynamics (CFD) numerical method based on Reynolds averaged Navier-Stokes (RANS) equations and volume of fluid (VOF) interface capturing method is established, and has been successfully applied in the simulation of air layer wave pattern. Both 2-D and 3-D simulations are carried out, aiming at analyzing air-water interface flow and vortex flow directly. Based on the simulation results, several important conclusions about the mechanism of air layer wave pattern can be obtained. Firstly, it is found to be an inherent characteristic that the wave height of the upstream air layer is higher than that of the downstream. The extremely high wave peak is easy to contact with the flat plate, leading to the breakup of air layer and a “central blank area” phenomenon. With the help of flow analysis, it is found that this characteristic is mainly caused by the strong counterclockwise vortex behind the bow wedge block. Secondly, the air layer stability is reduced with the increase of water flow velocity by affecting the wave height. There is a saturation point of air flow rate to reach maximum thickness of air layer. Thirdly, cavity configuration has obvious influence on air layer stability by influencing vortex flow field. The increase of cavity depth and width can aggravate the unsteady and nonlinear characteristics of air layer. Finally, comprehensive design criteria are concluded from the view of geometrical configuration and flow conditions. A cavity with the moderate depth and width can avoid the upstream damage of air layer. Longitudinal position of air nozzles should be set within the low pressure zone behind the wedge block for stable air layer formation.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"35 5","pages":"923 - 941"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on the wave pattern characteristic of air layer in cavity and the effects of multiple influence factors\",\"authors\":\"Xiao-song Zhang, Xue-qin Ji, Lei-qiang Chen, Li-jin Gao, Hong-bo Huang, Fang-wen Hong\",\"doi\":\"10.1007/s42241-023-0066-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Air-layer drag reduction (ALDR) technology for ship energy saving is getting more and more attention in recent years because of the outstanding drag reduction effect. In order to promote practical application, it is necessary to fully understand the two phase flow characteristics of the air layer. Recent experimental studies have shown that the surface of the air layer presents wave pattern, which has an important influence on its damage risk. However, it is difficult to measure the wave pattern quantificationally due to the interference of equipment. The main goal of the present paper is to investigate the wave pattern characteristic of air layer in cavity using numerical simulation method. On this basis, the effect of flow and geometric influence factors are discussed to understand the key control conditions. A computational fluid dynamics (CFD) numerical method based on Reynolds averaged Navier-Stokes (RANS) equations and volume of fluid (VOF) interface capturing method is established, and has been successfully applied in the simulation of air layer wave pattern. Both 2-D and 3-D simulations are carried out, aiming at analyzing air-water interface flow and vortex flow directly. Based on the simulation results, several important conclusions about the mechanism of air layer wave pattern can be obtained. Firstly, it is found to be an inherent characteristic that the wave height of the upstream air layer is higher than that of the downstream. The extremely high wave peak is easy to contact with the flat plate, leading to the breakup of air layer and a “central blank area” phenomenon. With the help of flow analysis, it is found that this characteristic is mainly caused by the strong counterclockwise vortex behind the bow wedge block. Secondly, the air layer stability is reduced with the increase of water flow velocity by affecting the wave height. There is a saturation point of air flow rate to reach maximum thickness of air layer. Thirdly, cavity configuration has obvious influence on air layer stability by influencing vortex flow field. The increase of cavity depth and width can aggravate the unsteady and nonlinear characteristics of air layer. Finally, comprehensive design criteria are concluded from the view of geometrical configuration and flow conditions. A cavity with the moderate depth and width can avoid the upstream damage of air layer. Longitudinal position of air nozzles should be set within the low pressure zone behind the wedge block for stable air layer formation.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"35 5\",\"pages\":\"923 - 941\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-023-0066-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-023-0066-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical study on the wave pattern characteristic of air layer in cavity and the effects of multiple influence factors
Air-layer drag reduction (ALDR) technology for ship energy saving is getting more and more attention in recent years because of the outstanding drag reduction effect. In order to promote practical application, it is necessary to fully understand the two phase flow characteristics of the air layer. Recent experimental studies have shown that the surface of the air layer presents wave pattern, which has an important influence on its damage risk. However, it is difficult to measure the wave pattern quantificationally due to the interference of equipment. The main goal of the present paper is to investigate the wave pattern characteristic of air layer in cavity using numerical simulation method. On this basis, the effect of flow and geometric influence factors are discussed to understand the key control conditions. A computational fluid dynamics (CFD) numerical method based on Reynolds averaged Navier-Stokes (RANS) equations and volume of fluid (VOF) interface capturing method is established, and has been successfully applied in the simulation of air layer wave pattern. Both 2-D and 3-D simulations are carried out, aiming at analyzing air-water interface flow and vortex flow directly. Based on the simulation results, several important conclusions about the mechanism of air layer wave pattern can be obtained. Firstly, it is found to be an inherent characteristic that the wave height of the upstream air layer is higher than that of the downstream. The extremely high wave peak is easy to contact with the flat plate, leading to the breakup of air layer and a “central blank area” phenomenon. With the help of flow analysis, it is found that this characteristic is mainly caused by the strong counterclockwise vortex behind the bow wedge block. Secondly, the air layer stability is reduced with the increase of water flow velocity by affecting the wave height. There is a saturation point of air flow rate to reach maximum thickness of air layer. Thirdly, cavity configuration has obvious influence on air layer stability by influencing vortex flow field. The increase of cavity depth and width can aggravate the unsteady and nonlinear characteristics of air layer. Finally, comprehensive design criteria are concluded from the view of geometrical configuration and flow conditions. A cavity with the moderate depth and width can avoid the upstream damage of air layer. Longitudinal position of air nozzles should be set within the low pressure zone behind the wedge block for stable air layer formation.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.