碳纳米管增强碳/环氧复合材料层间静态和疲劳脱层生长的表征

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Applied Composite Materials Pub Date : 2023-11-16 DOI:10.1007/s10443-023-10170-4
Millan Kumar, Pramod Kumar, Shailendra Singh Bhadauria
{"title":"碳纳米管增强碳/环氧复合材料层间静态和疲劳脱层生长的表征","authors":"Millan Kumar, Pramod Kumar, Shailendra Singh Bhadauria","doi":"10.1007/s10443-023-10170-4","DOIUrl":null,"url":null,"abstract":"<p>The present study focuses on the effect of CNT nanofillers on the interlaminar static and fatigue crack propagation in carbon fiber reinforced composite laminates. Multi-walled carbon nanotubes (MWCNTs) were dispersed over the laminate interface through solvent spraying technique. The mode I fracture toughness and <i>R</i> curve behavior were determined first from DCB specimens. Then, the fatigue tests were performed at different stress ratios for laminates containing different contents of CNTs to determine the delamination growth rate da/dN from fatigue crack growth (FCG) curves. When FCG curves are expressed as a function of <i>G</i>, where <i>G</i> is the energy release rate, the growth curves are dependent on the <i>R</i>-ratio. It was found that the addition of CNTs enhances the delamination resistance in the initial part of FCG curves, i.e. low cyclic region. As the test progresses, the effect gradually diminishes making nanofillers ineffective. It is then shown that the FCG curves can be characterized when crack growth rates are expressed as a function of the crack‐driving force <span>\\(\\overline{\\Delta \\kappa }\\)</span> used in the Hartman‐Schijve equation. Therefore, the present paper presents a methodology to account for the stress ratio effect to evaluate the crack growth rate for any given <i>R</i>-ratio and to obtain a valid, upper-bound FCG rate curves in CNT reinforced laminates that exhibit high degree of scatter.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Interlaminar Static and Fatigue Delamination Growth in Carbon/Epoxy Composites Reinforced with Carbon Nanotubes\",\"authors\":\"Millan Kumar, Pramod Kumar, Shailendra Singh Bhadauria\",\"doi\":\"10.1007/s10443-023-10170-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study focuses on the effect of CNT nanofillers on the interlaminar static and fatigue crack propagation in carbon fiber reinforced composite laminates. Multi-walled carbon nanotubes (MWCNTs) were dispersed over the laminate interface through solvent spraying technique. The mode I fracture toughness and <i>R</i> curve behavior were determined first from DCB specimens. Then, the fatigue tests were performed at different stress ratios for laminates containing different contents of CNTs to determine the delamination growth rate da/dN from fatigue crack growth (FCG) curves. When FCG curves are expressed as a function of <i>G</i>, where <i>G</i> is the energy release rate, the growth curves are dependent on the <i>R</i>-ratio. It was found that the addition of CNTs enhances the delamination resistance in the initial part of FCG curves, i.e. low cyclic region. As the test progresses, the effect gradually diminishes making nanofillers ineffective. It is then shown that the FCG curves can be characterized when crack growth rates are expressed as a function of the crack‐driving force <span>\\\\(\\\\overline{\\\\Delta \\\\kappa }\\\\)</span> used in the Hartman‐Schijve equation. Therefore, the present paper presents a methodology to account for the stress ratio effect to evaluate the crack growth rate for any given <i>R</i>-ratio and to obtain a valid, upper-bound FCG rate curves in CNT reinforced laminates that exhibit high degree of scatter.</p>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10443-023-10170-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-023-10170-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了碳纳米管填充剂对碳纤维增强复合材料层间静力和疲劳裂纹扩展的影响。采用溶剂喷涂技术将多壁碳纳米管(MWCNTs)分散在层压板界面上。首先从DCB试样中测定了I型断裂韧性和R曲线行为。然后,对含不同碳纳米管含量的层合材料进行不同应力比下的疲劳试验,从疲劳裂纹扩展(FCG)曲线中确定分层扩展速率da/dN。当FCG曲线表示为G的函数时,其中G为能量释放率,生长曲线依赖于r比。研究发现,CNTs的加入增强了FCG曲线初始部分,即低循环区域的抗分层能力。随着试验的进行,效果逐渐减弱,纳米填料失效。然后表明,当裂纹扩展速率表示为Hartman - Schijve方程中裂纹驱动力\(\overline{\Delta \kappa }\)的函数时,可以表征FCG曲线。因此,本文提出了一种考虑应力比效应的方法,以评估任何给定r比下的裂纹扩展速率,并获得碳纳米管增强层合板中具有高度分散的有效的上限FCG速率曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Interlaminar Static and Fatigue Delamination Growth in Carbon/Epoxy Composites Reinforced with Carbon Nanotubes

The present study focuses on the effect of CNT nanofillers on the interlaminar static and fatigue crack propagation in carbon fiber reinforced composite laminates. Multi-walled carbon nanotubes (MWCNTs) were dispersed over the laminate interface through solvent spraying technique. The mode I fracture toughness and R curve behavior were determined first from DCB specimens. Then, the fatigue tests were performed at different stress ratios for laminates containing different contents of CNTs to determine the delamination growth rate da/dN from fatigue crack growth (FCG) curves. When FCG curves are expressed as a function of G, where G is the energy release rate, the growth curves are dependent on the R-ratio. It was found that the addition of CNTs enhances the delamination resistance in the initial part of FCG curves, i.e. low cyclic region. As the test progresses, the effect gradually diminishes making nanofillers ineffective. It is then shown that the FCG curves can be characterized when crack growth rates are expressed as a function of the crack‐driving force \(\overline{\Delta \kappa }\) used in the Hartman‐Schijve equation. Therefore, the present paper presents a methodology to account for the stress ratio effect to evaluate the crack growth rate for any given R-ratio and to obtain a valid, upper-bound FCG rate curves in CNT reinforced laminates that exhibit high degree of scatter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
期刊最新文献
A Coupled Elastoplastic-Damage Analytical Model for 3D Resin-Matrix Woven Composites Effect of Temperature on the Mixed mode I/II Translaminar Fracture of Epoxy Composites Reinforced with Cotton Fibers Experimental Characterisation of Cure-Dependent Spring-Back Behaviour of Metal-Composite Laminates in a Hot-Pressing Process Cutting Force Model of SiCp/Al Composites in Ultrasonic Elliptical Vibration Assisted Cutting with Negative Rake Angle Experimental and Simulation Analysis of the Mechanical Deterioration Mechanisms in SiCp/A356 Composites Under Thermal Cycling Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1