{"title":"用于害虫监测的焦糖超高频 RFID 传感器","authors":"Dmitry Dobrykh;Ilai Solomon;Hani Barhum;Denis S. Kolchanov;Or Messer;Maxim Sokol;Avigdor Drucker;Eran Socher;Alexey Slobozhanyuk;Dmitry Filonov;Pavel Ginzburg","doi":"10.1109/JRFID.2023.3334431","DOIUrl":null,"url":null,"abstract":"The emerging need for green technologies motivates the development of new approaches to manufacture electronic consumables. In case of low-cost mass-production sensors, the problem becomes even more severe due to the generation of environmental waste. Here we demonstrate an RFID-type sensor based on a caramel substrate with a micron-scale conductive layer. The device, being primarily made of sugar, attracts insects, which consume it almost completely. As an application, we demonstrate a tag that can be applied for remote pest monitoring. In the experiment, a long-range UHF RFID communication channel is established and monitored over time. An RFID-on-caramel tag consumed by insects loses its connection with a reader, indicating the presence of pests. We show the new caramel-based devices to communicate with a reader over a 10-meter distance, paving the way to remote crop monitoring. Such low-cost biodegradable sensors are highly promising for smart agriculture, warehouse management, and stock monitoring approaches.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"7 ","pages":"601-608"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caramel UHF RFID Sensors for Pest Monitoring\",\"authors\":\"Dmitry Dobrykh;Ilai Solomon;Hani Barhum;Denis S. Kolchanov;Or Messer;Maxim Sokol;Avigdor Drucker;Eran Socher;Alexey Slobozhanyuk;Dmitry Filonov;Pavel Ginzburg\",\"doi\":\"10.1109/JRFID.2023.3334431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging need for green technologies motivates the development of new approaches to manufacture electronic consumables. In case of low-cost mass-production sensors, the problem becomes even more severe due to the generation of environmental waste. Here we demonstrate an RFID-type sensor based on a caramel substrate with a micron-scale conductive layer. The device, being primarily made of sugar, attracts insects, which consume it almost completely. As an application, we demonstrate a tag that can be applied for remote pest monitoring. In the experiment, a long-range UHF RFID communication channel is established and monitored over time. An RFID-on-caramel tag consumed by insects loses its connection with a reader, indicating the presence of pests. We show the new caramel-based devices to communicate with a reader over a 10-meter distance, paving the way to remote crop monitoring. Such low-cost biodegradable sensors are highly promising for smart agriculture, warehouse management, and stock monitoring approaches.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"7 \",\"pages\":\"601-608\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10323116/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10323116/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
对绿色技术的新需求促使人们开发制造电子消耗品的新方法。对于低成本大规模生产的传感器,由于会产生环境废物,问题变得更加严重。在这里,我们展示了一种基于焦糖基底并带有微米级导电层的 RFID 型传感器。该装置主要由糖制成,能吸引昆虫,昆虫几乎会完全吃掉它。作为一种应用,我们展示了一种可用于远程害虫监测的标签。在实验中,我们建立了一个远距离超高频射频识别(UHF RFID)通信信道,并对其进行长期监测。被昆虫吃掉的焦糖 RFID 标签会失去与读取器的连接,从而表明害虫的存在。我们展示了这种基于焦糖的新设备,它能在 10 米距离内与读取器通信,为远程作物监测铺平了道路。这种低成本的可生物降解传感器在智能农业、仓库管理和库存监控方法中大有可为。
The emerging need for green technologies motivates the development of new approaches to manufacture electronic consumables. In case of low-cost mass-production sensors, the problem becomes even more severe due to the generation of environmental waste. Here we demonstrate an RFID-type sensor based on a caramel substrate with a micron-scale conductive layer. The device, being primarily made of sugar, attracts insects, which consume it almost completely. As an application, we demonstrate a tag that can be applied for remote pest monitoring. In the experiment, a long-range UHF RFID communication channel is established and monitored over time. An RFID-on-caramel tag consumed by insects loses its connection with a reader, indicating the presence of pests. We show the new caramel-based devices to communicate with a reader over a 10-meter distance, paving the way to remote crop monitoring. Such low-cost biodegradable sensors are highly promising for smart agriculture, warehouse management, and stock monitoring approaches.