Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, M. O. Efimov, Yu. A. Shlyarova, I. A. Panchenko, M. D. Starostenkov
{"title":"在 5083 合金上形成的铝-铁-共-铬-镍 HEA 涂层的结构相态","authors":"Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, M. O. Efimov, Yu. A. Shlyarova, I. A. Panchenko, M. D. Starostenkov","doi":"10.1134/S1063783423700063","DOIUrl":null,"url":null,"abstract":"<p>An Al–Fe–Cr–Co–Ni high-entropy alloy (HEA) coating is deposited on a substrate made of 5083 alloy using the cold metal transfer (CMT) technology (wire-arc additive manufacturing (WAAM) in combination with welding surfacing). The HEA alloy has a nonequiatomic composition. The modern physical materials science methods are used to analyze the structure, phase and elemental compositions, defect substructure of the coating–substrate system. It is shown that he elemental and phase compositions, the defect substructure of the coating are dependent on the distance from the zone of contacting the coating and the substrate. The layer with a thickness to 200 µm adjacent to the contact zone contains includes a second phase at the HEA grain boundaries rich in chromium and iron atoms. The microdiffraction analysis shows that these inclusions are Al<sub>8</sub>Cr<sub>5</sub>. It is revealed that nanocrystalline phases Al<sub>2</sub>O<sub>3</sub> and MgAlO with sizes 10–20 nm and a subgrained structure (subgrain size 140–170 nm) form in the zone of mixing the coating and substrate. The structure of the I type is characterized by inhomogeneous distribution of chemical elements in HEA; there are regions of lammelar shape enriched in Cr atoms and the regions of spherical shape enriched Ni, Fe, and Co atoms. Nanosized (NiCo)<sub>3</sub>, Al<sub>4</sub>, and Al<sub>13</sub>Fe<sub>4</sub> particles are arranged along the subgrain boundaries of the system. The physical mechanisms of increasing the material hardness in the coating-substrate contact are discussed.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"65 1","pages":"36 - 42"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural–Phase States of an Al–Fe–Co–Cr–Ni HEA Coating Formed on 5083 Alloy\",\"authors\":\"Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, M. O. Efimov, Yu. A. Shlyarova, I. A. Panchenko, M. D. Starostenkov\",\"doi\":\"10.1134/S1063783423700063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An Al–Fe–Cr–Co–Ni high-entropy alloy (HEA) coating is deposited on a substrate made of 5083 alloy using the cold metal transfer (CMT) technology (wire-arc additive manufacturing (WAAM) in combination with welding surfacing). The HEA alloy has a nonequiatomic composition. The modern physical materials science methods are used to analyze the structure, phase and elemental compositions, defect substructure of the coating–substrate system. It is shown that he elemental and phase compositions, the defect substructure of the coating are dependent on the distance from the zone of contacting the coating and the substrate. The layer with a thickness to 200 µm adjacent to the contact zone contains includes a second phase at the HEA grain boundaries rich in chromium and iron atoms. The microdiffraction analysis shows that these inclusions are Al<sub>8</sub>Cr<sub>5</sub>. It is revealed that nanocrystalline phases Al<sub>2</sub>O<sub>3</sub> and MgAlO with sizes 10–20 nm and a subgrained structure (subgrain size 140–170 nm) form in the zone of mixing the coating and substrate. The structure of the I type is characterized by inhomogeneous distribution of chemical elements in HEA; there are regions of lammelar shape enriched in Cr atoms and the regions of spherical shape enriched Ni, Fe, and Co atoms. Nanosized (NiCo)<sub>3</sub>, Al<sub>4</sub>, and Al<sub>13</sub>Fe<sub>4</sub> particles are arranged along the subgrain boundaries of the system. The physical mechanisms of increasing the material hardness in the coating-substrate contact are discussed.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"65 1\",\"pages\":\"36 - 42\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783423700063\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783423700063","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Structural–Phase States of an Al–Fe–Co–Cr–Ni HEA Coating Formed on 5083 Alloy
An Al–Fe–Cr–Co–Ni high-entropy alloy (HEA) coating is deposited on a substrate made of 5083 alloy using the cold metal transfer (CMT) technology (wire-arc additive manufacturing (WAAM) in combination with welding surfacing). The HEA alloy has a nonequiatomic composition. The modern physical materials science methods are used to analyze the structure, phase and elemental compositions, defect substructure of the coating–substrate system. It is shown that he elemental and phase compositions, the defect substructure of the coating are dependent on the distance from the zone of contacting the coating and the substrate. The layer with a thickness to 200 µm adjacent to the contact zone contains includes a second phase at the HEA grain boundaries rich in chromium and iron atoms. The microdiffraction analysis shows that these inclusions are Al8Cr5. It is revealed that nanocrystalline phases Al2O3 and MgAlO with sizes 10–20 nm and a subgrained structure (subgrain size 140–170 nm) form in the zone of mixing the coating and substrate. The structure of the I type is characterized by inhomogeneous distribution of chemical elements in HEA; there are regions of lammelar shape enriched in Cr atoms and the regions of spherical shape enriched Ni, Fe, and Co atoms. Nanosized (NiCo)3, Al4, and Al13Fe4 particles are arranged along the subgrain boundaries of the system. The physical mechanisms of increasing the material hardness in the coating-substrate contact are discussed.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.