{"title":"双分子层张力诱导的 UPR 传感器 IRE1 聚类","authors":"Md Zobayer Hossain, Wylie Stroberg","doi":"10.1016/j.bbamem.2023.184262","DOIUrl":null,"url":null,"abstract":"<div><p><span>The endoplasmic reticulum acts as a protein quality control center where a range of chaperones and foldases facilitates protein folding. </span>IRE1<span><span> is a sensory transmembrane protein that transduces signals of proteotoxic stress by forming clusters and activating a cellular program called the </span>unfolded protein response<span><span> (UPR). Recently, membrane thickness variation due to membrane compositional changes have been shown to drive IRE1 cluster formation, activating the UPR even in the absence of proteotoxic stress. Here, we demonstrate a direct relationship between bilayer tension and UPR activation based on IRE1 dimer stability. The stability of the IRE1 dimer in a (50%DOPC-50%POPC) membrane at different applied bilayer tensions was analyzed via molecular dynamics simulations. The potential of mean force for IRE1 </span>dimerization<span> predicts a higher concentration of IRE1 dimers for both tensed and compressed ER membranes. This study shows that IRE1 may be a mechanosensitive membrane protein and establishes a direct biophysical relationship between bilayer tension and UPR activation.</span></span></span></p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 2","pages":"Article 184262"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayer tension-induced clustering of the UPR sensor IRE1\",\"authors\":\"Md Zobayer Hossain, Wylie Stroberg\",\"doi\":\"10.1016/j.bbamem.2023.184262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The endoplasmic reticulum acts as a protein quality control center where a range of chaperones and foldases facilitates protein folding. </span>IRE1<span><span> is a sensory transmembrane protein that transduces signals of proteotoxic stress by forming clusters and activating a cellular program called the </span>unfolded protein response<span><span> (UPR). Recently, membrane thickness variation due to membrane compositional changes have been shown to drive IRE1 cluster formation, activating the UPR even in the absence of proteotoxic stress. Here, we demonstrate a direct relationship between bilayer tension and UPR activation based on IRE1 dimer stability. The stability of the IRE1 dimer in a (50%DOPC-50%POPC) membrane at different applied bilayer tensions was analyzed via molecular dynamics simulations. The potential of mean force for IRE1 </span>dimerization<span> predicts a higher concentration of IRE1 dimers for both tensed and compressed ER membranes. This study shows that IRE1 may be a mechanosensitive membrane protein and establishes a direct biophysical relationship between bilayer tension and UPR activation.</span></span></span></p></div>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\"1866 2\",\"pages\":\"Article 184262\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000527362300144X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000527362300144X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bilayer tension-induced clustering of the UPR sensor IRE1
The endoplasmic reticulum acts as a protein quality control center where a range of chaperones and foldases facilitates protein folding. IRE1 is a sensory transmembrane protein that transduces signals of proteotoxic stress by forming clusters and activating a cellular program called the unfolded protein response (UPR). Recently, membrane thickness variation due to membrane compositional changes have been shown to drive IRE1 cluster formation, activating the UPR even in the absence of proteotoxic stress. Here, we demonstrate a direct relationship between bilayer tension and UPR activation based on IRE1 dimer stability. The stability of the IRE1 dimer in a (50%DOPC-50%POPC) membrane at different applied bilayer tensions was analyzed via molecular dynamics simulations. The potential of mean force for IRE1 dimerization predicts a higher concentration of IRE1 dimers for both tensed and compressed ER membranes. This study shows that IRE1 may be a mechanosensitive membrane protein and establishes a direct biophysical relationship between bilayer tension and UPR activation.
期刊介绍:
BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.