Chunlei Zhang , Siyu Gao , Di Yu , Shengran Zhou , Lanyi Wang , Xuehua Yu , Zhen Zhao
{"title":"制备具有特定形态的铈基氧化物催化剂及其在柴油发动机尾气净化中的应用的研究进展","authors":"Chunlei Zhang , Siyu Gao , Di Yu , Shengran Zhou , Lanyi Wang , Xuehua Yu , Zhen Zhao","doi":"10.1016/j.jre.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>The elimination of pollutants from diesel exhaust has received widespread research attention as they cause serious air pollution and pose a threat to human health. Catalytic post-treatment technology is one of the most effective and universal technologies to treat diesel exhaust pollutants. The design and development of efficient and low-cost catalysts is the key factor to realize the wide application of catalytic post-treatment technology. Cerium (Ce)-based oxides with specific morphologies are widely used to eliminate pollutants in diesel vehicle exhaust due to their unique physical and chemical properties, such as high catalytic activity, low cost and non-toxicity. In this review, the preparation methods of Ce-based oxide materials with specific morphologies, such as nanoparticles, nanocubes, nanorods, nanofibers, and multi-stage pores, are introduced in detail, and the research progress on using these catalysts for the removal of carbon monoxide, hydrocarbons, soot particles, nitrogen oxides, and other pollutants from diesel exhaust is reviewed in detail. Finally, the unresolved issues associated with using Ce-based oxide catalysts with a specific morphology to catalytically remove pollutants from diesel exhaust are highlighted, and future application prospects and development directions are discussed.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 7","pages":"Pages 1187-1216"},"PeriodicalIF":5.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on preparation of cerium-based oxide catalysts with specific morphology and their application for purification of diesel engine exhaust\",\"authors\":\"Chunlei Zhang , Siyu Gao , Di Yu , Shengran Zhou , Lanyi Wang , Xuehua Yu , Zhen Zhao\",\"doi\":\"10.1016/j.jre.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The elimination of pollutants from diesel exhaust has received widespread research attention as they cause serious air pollution and pose a threat to human health. Catalytic post-treatment technology is one of the most effective and universal technologies to treat diesel exhaust pollutants. The design and development of efficient and low-cost catalysts is the key factor to realize the wide application of catalytic post-treatment technology. Cerium (Ce)-based oxides with specific morphologies are widely used to eliminate pollutants in diesel vehicle exhaust due to their unique physical and chemical properties, such as high catalytic activity, low cost and non-toxicity. In this review, the preparation methods of Ce-based oxide materials with specific morphologies, such as nanoparticles, nanocubes, nanorods, nanofibers, and multi-stage pores, are introduced in detail, and the research progress on using these catalysts for the removal of carbon monoxide, hydrocarbons, soot particles, nitrogen oxides, and other pollutants from diesel exhaust is reviewed in detail. Finally, the unresolved issues associated with using Ce-based oxide catalysts with a specific morphology to catalytically remove pollutants from diesel exhaust are highlighted, and future application prospects and development directions are discussed.</p></div>\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"42 7\",\"pages\":\"Pages 1187-1216\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002072123003381\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123003381","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Research progress on preparation of cerium-based oxide catalysts with specific morphology and their application for purification of diesel engine exhaust
The elimination of pollutants from diesel exhaust has received widespread research attention as they cause serious air pollution and pose a threat to human health. Catalytic post-treatment technology is one of the most effective and universal technologies to treat diesel exhaust pollutants. The design and development of efficient and low-cost catalysts is the key factor to realize the wide application of catalytic post-treatment technology. Cerium (Ce)-based oxides with specific morphologies are widely used to eliminate pollutants in diesel vehicle exhaust due to their unique physical and chemical properties, such as high catalytic activity, low cost and non-toxicity. In this review, the preparation methods of Ce-based oxide materials with specific morphologies, such as nanoparticles, nanocubes, nanorods, nanofibers, and multi-stage pores, are introduced in detail, and the research progress on using these catalysts for the removal of carbon monoxide, hydrocarbons, soot particles, nitrogen oxides, and other pollutants from diesel exhaust is reviewed in detail. Finally, the unresolved issues associated with using Ce-based oxide catalysts with a specific morphology to catalytically remove pollutants from diesel exhaust are highlighted, and future application prospects and development directions are discussed.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.