{"title":"大体积粉煤灰和 GGBFS 混凝土中的热裂缝","authors":"Yingda Zhang","doi":"10.1186/s40069-023-00626-z","DOIUrl":null,"url":null,"abstract":"<p>Supplementary cementitious materials (SCMs) such as fly ash and ground granulated blast furnace slag (GGBFS) are found to control the maximum temperature and the accompanying thermal gradients effectively. However, SCMs also lead to low early age strength development. Thus, it is crucial to understand the cracking behaviour of SCMs-based concrete affected by the mix design parameters. In this paper, the thermal cracking resistance was evaluated using a rigid cracking frame (RCF) with a computer-controlled temperature profile. The temperature profile was determined using the software ConcreteWorks by assuming the centre point of the mass concrete. The free shrinkage frame (FSF) and match-curing oven follow the same temperature profile as RCF to measure the free total deformation and time-dependent mechanical properties of concrete, respectively. An analytical model was proposed to calculate the autogenous shrinkage and the thermal stress separately. A time-dependent cracking risk coefficient allowing to estimate the risk of early age cracking of concrete was also proposed.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Cracking in High Volume of Fly Ash and GGBFS Concrete\",\"authors\":\"Yingda Zhang\",\"doi\":\"10.1186/s40069-023-00626-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supplementary cementitious materials (SCMs) such as fly ash and ground granulated blast furnace slag (GGBFS) are found to control the maximum temperature and the accompanying thermal gradients effectively. However, SCMs also lead to low early age strength development. Thus, it is crucial to understand the cracking behaviour of SCMs-based concrete affected by the mix design parameters. In this paper, the thermal cracking resistance was evaluated using a rigid cracking frame (RCF) with a computer-controlled temperature profile. The temperature profile was determined using the software ConcreteWorks by assuming the centre point of the mass concrete. The free shrinkage frame (FSF) and match-curing oven follow the same temperature profile as RCF to measure the free total deformation and time-dependent mechanical properties of concrete, respectively. An analytical model was proposed to calculate the autogenous shrinkage and the thermal stress separately. A time-dependent cracking risk coefficient allowing to estimate the risk of early age cracking of concrete was also proposed.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00626-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00626-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Thermal Cracking in High Volume of Fly Ash and GGBFS Concrete
Supplementary cementitious materials (SCMs) such as fly ash and ground granulated blast furnace slag (GGBFS) are found to control the maximum temperature and the accompanying thermal gradients effectively. However, SCMs also lead to low early age strength development. Thus, it is crucial to understand the cracking behaviour of SCMs-based concrete affected by the mix design parameters. In this paper, the thermal cracking resistance was evaluated using a rigid cracking frame (RCF) with a computer-controlled temperature profile. The temperature profile was determined using the software ConcreteWorks by assuming the centre point of the mass concrete. The free shrinkage frame (FSF) and match-curing oven follow the same temperature profile as RCF to measure the free total deformation and time-dependent mechanical properties of concrete, respectively. An analytical model was proposed to calculate the autogenous shrinkage and the thermal stress separately. A time-dependent cracking risk coefficient allowing to estimate the risk of early age cracking of concrete was also proposed.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.