{"title":"探索溶胶的代谢和抗氧化潜力:对提高动物生产的影响","authors":"Pamela Olivares-Ferretti , Viviana Chavez , Ekaitz Maguregui , Silvia Jiménez , Octavi Colom , Jorge Parodi","doi":"10.1016/j.btre.2023.e00821","DOIUrl":null,"url":null,"abstract":"<div><p>Cell models are indispensable tools in biotechnology when investigating the functional properties of organic compounds. The emergence of various additives designed to enhance animal production has introduced the need for in-depth evaluations, which are often hindered by the complexities of <em>in vivo</em> testing. In this study, we harnessed cell-based models to scrutinize the impact of Solergy as a regulator of cellular metabolism with a particular focus on its modulation of glycogen and antioxidant effects. Our experiment was designed to include assessments of the influence of Solergy on the viability of both terrestrial and aquatic vertebrate cell models, which revealed the benign nature of Solergy and its lack of adverse effects. Furthermore, we examined the capacity of Solergy to modulate intracellular ATP concentrations and enhance glycogen accumulation. Notably, the antioxidant potential of Solergy and its ability to mitigate cellular aging were evaluated within the same cellular frameworks. The outcomes of our investigation suggest that Solergy is a potent metabolic regulator that elevates cellular activity while exerting an antioxidant effect. Importantly, our study demonstrates that Solergy does not induce changes in membrane oxidation. These findings indicate the potential of using Solergy to regulate glycogen synthesis, intracellular ATP concentrations, and oxidative stress in production animals. The multifaceted effects of this additive, which acts as both a metabolism enhancer and an antioxidant, open doors to the creation of custom diets tailored to meet specific production needs while maintaining stable production parameters.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"41 ","pages":"Article e00821"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X23000413/pdfft?md5=016ff2f32db08bf89e52e4482ca3eb6b&pid=1-s2.0-S2215017X23000413-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the metabolic and antioxidant potential of solergy: Implications for enhanced animal production\",\"authors\":\"Pamela Olivares-Ferretti , Viviana Chavez , Ekaitz Maguregui , Silvia Jiménez , Octavi Colom , Jorge Parodi\",\"doi\":\"10.1016/j.btre.2023.e00821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cell models are indispensable tools in biotechnology when investigating the functional properties of organic compounds. The emergence of various additives designed to enhance animal production has introduced the need for in-depth evaluations, which are often hindered by the complexities of <em>in vivo</em> testing. In this study, we harnessed cell-based models to scrutinize the impact of Solergy as a regulator of cellular metabolism with a particular focus on its modulation of glycogen and antioxidant effects. Our experiment was designed to include assessments of the influence of Solergy on the viability of both terrestrial and aquatic vertebrate cell models, which revealed the benign nature of Solergy and its lack of adverse effects. Furthermore, we examined the capacity of Solergy to modulate intracellular ATP concentrations and enhance glycogen accumulation. Notably, the antioxidant potential of Solergy and its ability to mitigate cellular aging were evaluated within the same cellular frameworks. The outcomes of our investigation suggest that Solergy is a potent metabolic regulator that elevates cellular activity while exerting an antioxidant effect. Importantly, our study demonstrates that Solergy does not induce changes in membrane oxidation. These findings indicate the potential of using Solergy to regulate glycogen synthesis, intracellular ATP concentrations, and oxidative stress in production animals. The multifaceted effects of this additive, which acts as both a metabolism enhancer and an antioxidant, open doors to the creation of custom diets tailored to meet specific production needs while maintaining stable production parameters.</p></div>\",\"PeriodicalId\":38117,\"journal\":{\"name\":\"Biotechnology Reports\",\"volume\":\"41 \",\"pages\":\"Article e00821\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2215017X23000413/pdfft?md5=016ff2f32db08bf89e52e4482ca3eb6b&pid=1-s2.0-S2215017X23000413-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215017X23000413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X23000413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
摘要
细胞模型是生物技术中研究有机化合物功能特性不可或缺的工具。随着各种旨在提高动物生产性能的添加剂的出现,我们需要对其进行深入评估,而体内测试的复杂性往往会阻碍这种评估。在本研究中,我们利用基于细胞的模型来仔细研究索乐金作为细胞代谢调节剂的影响,尤其侧重于其对糖原和抗氧化作用的调节。我们的实验设计包括评估 Solergy 对陆生和水生脊椎动物细胞模型活力的影响,结果显示 Solergy 是良性的,没有不良影响。此外,我们还研究了 Solergy 调节细胞内 ATP 浓度和促进糖原累积的能力。值得注意的是,我们在相同的细胞框架内评估了 Solergy 的抗氧化潜力及其缓解细胞衰老的能力。我们的研究结果表明,Solergy 是一种有效的新陈代谢调节剂,在发挥抗氧化作用的同时还能提高细胞活性。重要的是,我们的研究表明 Solergy 不会引起膜氧化的变化。这些发现表明,使用 Solergy 有可能调节生产动物体内的糖原合成、细胞内 ATP 浓度和氧化应激。这种既能促进新陈代谢又能抗氧化的添加剂具有多方面的作用,为定制日粮打开了大门,既能满足特定的生产需求,又能保持稳定的生产参数。
Exploring the metabolic and antioxidant potential of solergy: Implications for enhanced animal production
Cell models are indispensable tools in biotechnology when investigating the functional properties of organic compounds. The emergence of various additives designed to enhance animal production has introduced the need for in-depth evaluations, which are often hindered by the complexities of in vivo testing. In this study, we harnessed cell-based models to scrutinize the impact of Solergy as a regulator of cellular metabolism with a particular focus on its modulation of glycogen and antioxidant effects. Our experiment was designed to include assessments of the influence of Solergy on the viability of both terrestrial and aquatic vertebrate cell models, which revealed the benign nature of Solergy and its lack of adverse effects. Furthermore, we examined the capacity of Solergy to modulate intracellular ATP concentrations and enhance glycogen accumulation. Notably, the antioxidant potential of Solergy and its ability to mitigate cellular aging were evaluated within the same cellular frameworks. The outcomes of our investigation suggest that Solergy is a potent metabolic regulator that elevates cellular activity while exerting an antioxidant effect. Importantly, our study demonstrates that Solergy does not induce changes in membrane oxidation. These findings indicate the potential of using Solergy to regulate glycogen synthesis, intracellular ATP concentrations, and oxidative stress in production animals. The multifaceted effects of this additive, which acts as both a metabolism enhancer and an antioxidant, open doors to the creation of custom diets tailored to meet specific production needs while maintaining stable production parameters.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.