关于官方统计中机器学习的十项主张

Arnout van Delden, Joep Burger, Marco Puts
{"title":"关于官方统计中机器学习的十项主张","authors":"Arnout van Delden,&nbsp;Joep Burger,&nbsp;Marco Puts","doi":"10.1007/s11943-023-00330-0","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning (ML) is increasingly being used in official statistics with a range of different applications. The main focus of ML models is to accurately predict attributes of new, unlabeled cases whereas the focus of classical statistical models is to describe the relations between independent and dependent variables. There is already a lot of experience in the sound use of classical statistical models in official statistics, but for ML models this is still under development. Recent discussions concerning the quality aspects of using ML in official statistics have concentrated on its implications for existing quality frameworks. We are in favor of the use of ML in official statistics, but the main question remains as to what factors need to be considered when using ML models in official statistics. As a means of raising awareness regarding these factors, we pose ten propositions regarding the (sensible) use of ML in official statistics.</p></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"17 3-4","pages":"195 - 221"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ten propositions on machine learning in official statistics\",\"authors\":\"Arnout van Delden,&nbsp;Joep Burger,&nbsp;Marco Puts\",\"doi\":\"10.1007/s11943-023-00330-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning (ML) is increasingly being used in official statistics with a range of different applications. The main focus of ML models is to accurately predict attributes of new, unlabeled cases whereas the focus of classical statistical models is to describe the relations between independent and dependent variables. There is already a lot of experience in the sound use of classical statistical models in official statistics, but for ML models this is still under development. Recent discussions concerning the quality aspects of using ML in official statistics have concentrated on its implications for existing quality frameworks. We are in favor of the use of ML in official statistics, but the main question remains as to what factors need to be considered when using ML models in official statistics. As a means of raising awareness regarding these factors, we pose ten propositions regarding the (sensible) use of ML in official statistics.</p></div>\",\"PeriodicalId\":100134,\"journal\":{\"name\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"volume\":\"17 3-4\",\"pages\":\"195 - 221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AStA Wirtschafts- und Sozialstatistisches Archiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11943-023-00330-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-023-00330-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)正越来越多地应用于官方统计中的一系列不同领域。ML 模型的主要重点是准确预测未标记的新案例的属性,而经典统计模型的重点是描述自变量和因变量之间的关系。在官方统计中合理使用经典统计模型方面已经有了很多经验,但对于 ML 模型来说,这仍处于发展阶段。最近有关在官方统计中使用 ML 的质量问题的讨论主要集中在其对现有质量框架的影响上。我们赞成在官方统计中使用 ML,但主要问题仍然是在官方统计中使用 ML 模型时需要考虑哪些因素。为了提高对这些因素的认识,我们提出了关于在官方统计中(合理)使用 ML 的十项主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ten propositions on machine learning in official statistics

Machine learning (ML) is increasingly being used in official statistics with a range of different applications. The main focus of ML models is to accurately predict attributes of new, unlabeled cases whereas the focus of classical statistical models is to describe the relations between independent and dependent variables. There is already a lot of experience in the sound use of classical statistical models in official statistics, but for ML models this is still under development. Recent discussions concerning the quality aspects of using ML in official statistics have concentrated on its implications for existing quality frameworks. We are in favor of the use of ML in official statistics, but the main question remains as to what factors need to be considered when using ML models in official statistics. As a means of raising awareness regarding these factors, we pose ten propositions regarding the (sensible) use of ML in official statistics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vorwort der Herausgeber Connecting algorithmic fairness to quality dimensions in machine learning in official statistics and survey production Automated Bayesian variable selection methods for binary regression models with missing covariate data Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln Interview mit Walter Krämer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1