{"title":"评估基于神经网络的拓扑优化衍生物","authors":"Joel C. Najmon, Andres Tovar","doi":"10.1115/1.4064243","DOIUrl":null,"url":null,"abstract":"\n Neural networks have gained popularity for modeling complex non-linear relationships. Their computational efficiency has led to their growing adoption in optimization methods, including topology optimization. Recently, there have been several contributions towards improving derivatives of neural network outputs, which can improve their use in gradient-based optimization. However, a comparative study has yet to be conducted on the different derivative methods for the sensitivity of the input features on the neural network outputs. This paper aims to evaluate four derivative methods: analytical neural network's Jacobian, central finite difference method, complex step method, and automatic differentiation. These methods are implemented into density-based and homogenization-based topology optimization using multilayer perceptrons (MLPs). For density-based topology optimization, the MLP approximates Young's modulus for the solid-isotropic-material-with-penalization (SIMP) model. For homogenization-based topology optimization, the MLP approximates the homogenized stiffness tensor of a representative volume element, e.g., square cell microstructure with a rectangular hole. The comparative study is performed by solving two-dimensional topology optimization problems using the sensitivity coefficients from each derivative method. Evaluation includes initial sensitivity coefficients, convergence plots, and the final topologies, compliance, and design variables. The findings demonstrate that neural network-based sensitivity coefficients are sufficient for density-based and homogenization-based topology optimization. The neural network's Jacobian, complex step method, and automatic differentiation produced identical sensitivity coefficients to working precision. The study's open-source code is provided through an included Python repository.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"46 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Neural Network-based Derivatives for Topology Optimization\",\"authors\":\"Joel C. Najmon, Andres Tovar\",\"doi\":\"10.1115/1.4064243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Neural networks have gained popularity for modeling complex non-linear relationships. Their computational efficiency has led to their growing adoption in optimization methods, including topology optimization. Recently, there have been several contributions towards improving derivatives of neural network outputs, which can improve their use in gradient-based optimization. However, a comparative study has yet to be conducted on the different derivative methods for the sensitivity of the input features on the neural network outputs. This paper aims to evaluate four derivative methods: analytical neural network's Jacobian, central finite difference method, complex step method, and automatic differentiation. These methods are implemented into density-based and homogenization-based topology optimization using multilayer perceptrons (MLPs). For density-based topology optimization, the MLP approximates Young's modulus for the solid-isotropic-material-with-penalization (SIMP) model. For homogenization-based topology optimization, the MLP approximates the homogenized stiffness tensor of a representative volume element, e.g., square cell microstructure with a rectangular hole. The comparative study is performed by solving two-dimensional topology optimization problems using the sensitivity coefficients from each derivative method. Evaluation includes initial sensitivity coefficients, convergence plots, and the final topologies, compliance, and design variables. The findings demonstrate that neural network-based sensitivity coefficients are sufficient for density-based and homogenization-based topology optimization. The neural network's Jacobian, complex step method, and automatic differentiation produced identical sensitivity coefficients to working precision. The study's open-source code is provided through an included Python repository.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"46 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064243\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Evaluation of Neural Network-based Derivatives for Topology Optimization
Neural networks have gained popularity for modeling complex non-linear relationships. Their computational efficiency has led to their growing adoption in optimization methods, including topology optimization. Recently, there have been several contributions towards improving derivatives of neural network outputs, which can improve their use in gradient-based optimization. However, a comparative study has yet to be conducted on the different derivative methods for the sensitivity of the input features on the neural network outputs. This paper aims to evaluate four derivative methods: analytical neural network's Jacobian, central finite difference method, complex step method, and automatic differentiation. These methods are implemented into density-based and homogenization-based topology optimization using multilayer perceptrons (MLPs). For density-based topology optimization, the MLP approximates Young's modulus for the solid-isotropic-material-with-penalization (SIMP) model. For homogenization-based topology optimization, the MLP approximates the homogenized stiffness tensor of a representative volume element, e.g., square cell microstructure with a rectangular hole. The comparative study is performed by solving two-dimensional topology optimization problems using the sensitivity coefficients from each derivative method. Evaluation includes initial sensitivity coefficients, convergence plots, and the final topologies, compliance, and design variables. The findings demonstrate that neural network-based sensitivity coefficients are sufficient for density-based and homogenization-based topology optimization. The neural network's Jacobian, complex step method, and automatic differentiation produced identical sensitivity coefficients to working precision. The study's open-source code is provided through an included Python repository.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.