{"title":"基于 TBGAV 的旅游评论图像-文本多模态情感分析方法","authors":"Ke Zhang, Shunmin Wang, Yuyuan Yu","doi":"10.4018/ijitwe.334595","DOIUrl":null,"url":null,"abstract":"To overcome limitations in existing methods for sentiment analysis of tourism reviews, the authors propose an image-text multimodal sentiment analysis method (TBGAV). It consists of three modules: image sentiment extraction, text sentiment extraction, and image-text fusion. The image sentiment extraction module employs a pre-trained VGG19 model to capture sentiment features. The text sentiment extraction module utilizes the tiny bidirectional encoder representations from transformers (TinyBERT) model, incorporating the bidirectional recurrent neural network and attention (BiGRU-Attention) module for deeper sentiment semantics. The image-text fusion module employs the dual linear fusion approach to correlate image-text links and the maximum decision-making approach for high-precision sentiment prediction. TBGAV achieves superior performance on the Yelp dataset with accuracy, recall rates, and F1 scores of 77.51%, 78.01%, and 78.34%, respectively, outperforming existing methods. Accordingly, TBGAV is expected to help improve travel-related recommender systems and marketing strategies.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":"32 7","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A TBGAV-Based Image-Text Multimodal Sentiment Analysis Method for Tourism Reviews\",\"authors\":\"Ke Zhang, Shunmin Wang, Yuyuan Yu\",\"doi\":\"10.4018/ijitwe.334595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome limitations in existing methods for sentiment analysis of tourism reviews, the authors propose an image-text multimodal sentiment analysis method (TBGAV). It consists of three modules: image sentiment extraction, text sentiment extraction, and image-text fusion. The image sentiment extraction module employs a pre-trained VGG19 model to capture sentiment features. The text sentiment extraction module utilizes the tiny bidirectional encoder representations from transformers (TinyBERT) model, incorporating the bidirectional recurrent neural network and attention (BiGRU-Attention) module for deeper sentiment semantics. The image-text fusion module employs the dual linear fusion approach to correlate image-text links and the maximum decision-making approach for high-precision sentiment prediction. TBGAV achieves superior performance on the Yelp dataset with accuracy, recall rates, and F1 scores of 77.51%, 78.01%, and 78.34%, respectively, outperforming existing methods. Accordingly, TBGAV is expected to help improve travel-related recommender systems and marketing strategies.\",\"PeriodicalId\":51925,\"journal\":{\"name\":\"International Journal of Information Technology and Web Engineering\",\"volume\":\"32 7\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Web Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.334595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.334595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A TBGAV-Based Image-Text Multimodal Sentiment Analysis Method for Tourism Reviews
To overcome limitations in existing methods for sentiment analysis of tourism reviews, the authors propose an image-text multimodal sentiment analysis method (TBGAV). It consists of three modules: image sentiment extraction, text sentiment extraction, and image-text fusion. The image sentiment extraction module employs a pre-trained VGG19 model to capture sentiment features. The text sentiment extraction module utilizes the tiny bidirectional encoder representations from transformers (TinyBERT) model, incorporating the bidirectional recurrent neural network and attention (BiGRU-Attention) module for deeper sentiment semantics. The image-text fusion module employs the dual linear fusion approach to correlate image-text links and the maximum decision-making approach for high-precision sentiment prediction. TBGAV achieves superior performance on the Yelp dataset with accuracy, recall rates, and F1 scores of 77.51%, 78.01%, and 78.34%, respectively, outperforming existing methods. Accordingly, TBGAV is expected to help improve travel-related recommender systems and marketing strategies.
期刊介绍:
Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.