{"title":"通过多尺度特征和偏移预测进行自适应加权人脸对齐","authors":"Jingwen Li, Jiuzhen Liang, Hao Liu, Zhenjie Hou","doi":"10.1049/2023/6636386","DOIUrl":null,"url":null,"abstract":"Traditional heatmap regression methods have some problems such as the lower limit of theoretical error and the lack of global constraints, which may lead to the collapse of the results in practical application. In this paper, we develop a facial landmark detection model aided by offset prediction to constrain the global shape. First, the hybrid detection model is used to roughly locate the initial coordinates predicted by the backbone network. At the same time, the head rotation attitude prediction module is added to the backbone network, and the Euler angle is used as the adaptive weight to modify the loss function so that the model has better robustness to the large pose image. Then, we introduce an offset prediction network. It uses the heatmap corresponding to the initial coordinates as an attention mask to fuze with the features, so the network can focus on the area around landmarks. This model shares the global features and regresses the offset relative to the real coordinates based on the initial coordinates to further enhance the continuity. In addition, we also add a multi-scale feature pre-extraction module to preprocess features so that we can increase feature scales and receptive fields. Experiments on several challenging public datasets show that our method gets better performance than the existing detection methods, confirming the effectiveness of our method.","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"56 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Weighted Face Alignment by Multi-Scale Feature and Offset Prediction\",\"authors\":\"Jingwen Li, Jiuzhen Liang, Hao Liu, Zhenjie Hou\",\"doi\":\"10.1049/2023/6636386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional heatmap regression methods have some problems such as the lower limit of theoretical error and the lack of global constraints, which may lead to the collapse of the results in practical application. In this paper, we develop a facial landmark detection model aided by offset prediction to constrain the global shape. First, the hybrid detection model is used to roughly locate the initial coordinates predicted by the backbone network. At the same time, the head rotation attitude prediction module is added to the backbone network, and the Euler angle is used as the adaptive weight to modify the loss function so that the model has better robustness to the large pose image. Then, we introduce an offset prediction network. It uses the heatmap corresponding to the initial coordinates as an attention mask to fuze with the features, so the network can focus on the area around landmarks. This model shares the global features and regresses the offset relative to the real coordinates based on the initial coordinates to further enhance the continuity. In addition, we also add a multi-scale feature pre-extraction module to preprocess features so that we can increase feature scales and receptive fields. Experiments on several challenging public datasets show that our method gets better performance than the existing detection methods, confirming the effectiveness of our method.\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"56 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/6636386\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1049/2023/6636386","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adaptive Weighted Face Alignment by Multi-Scale Feature and Offset Prediction
Traditional heatmap regression methods have some problems such as the lower limit of theoretical error and the lack of global constraints, which may lead to the collapse of the results in practical application. In this paper, we develop a facial landmark detection model aided by offset prediction to constrain the global shape. First, the hybrid detection model is used to roughly locate the initial coordinates predicted by the backbone network. At the same time, the head rotation attitude prediction module is added to the backbone network, and the Euler angle is used as the adaptive weight to modify the loss function so that the model has better robustness to the large pose image. Then, we introduce an offset prediction network. It uses the heatmap corresponding to the initial coordinates as an attention mask to fuze with the features, so the network can focus on the area around landmarks. This model shares the global features and regresses the offset relative to the real coordinates based on the initial coordinates to further enhance the continuity. In addition, we also add a multi-scale feature pre-extraction module to preprocess features so that we can increase feature scales and receptive fields. Experiments on several challenging public datasets show that our method gets better performance than the existing detection methods, confirming the effectiveness of our method.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues