M. Gold, K. Niermans, F. Jooste, L. Stanford, F. Uwamahoro, M. Wanja, T. Veldkamp, A. Sanderson, V. Dos Santos Nunes, A. Mathys, H. van der Fels-Klerx, E. F. Hoek-van den Hil, K. Nishimwe
{"title":"黑兵蝇幼虫将受霉菌毒素污染的玉米转化为饲料和肥料","authors":"M. Gold, K. Niermans, F. Jooste, L. Stanford, F. Uwamahoro, M. Wanja, T. Veldkamp, A. Sanderson, V. Dos Santos Nunes, A. Mathys, H. van der Fels-Klerx, E. F. Hoek-van den Hil, K. Nishimwe","doi":"10.1163/23524588-00001006","DOIUrl":null,"url":null,"abstract":"\nGlobally, large amounts of various crops such as cereals, oilseeds, nuts and spices are contaminated with mycotoxins during pre-harvest, postharvest handling, processing and/or storage. Mycotoxin contamination results into economic and health issues, and valorisation options of contaminated crops are urgently needed. The aim of this research was to evaluate whether quality feed and fertilizer can be safely produced from naturally mycotoxin contaminated crops using black soldier fly larvae (BSFL, Hermetia illucens L.) under realistic field conditions in East Africa. Naturally mycotoxin contaminated maize (corn; Zea mays L.) was used as a model due its prevalence as food and feed and utilized by BSFL together with local agri-food by-products at a research facility in Rwanda. To assess the influence of the initial maize mycotoxin contamination and maize inclusion, larval diets with three mycotoxin contamination levels and two maize inclusion levels were tested. BSFL were tolerant against the high mycotoxin concentrations (e.g. 99.4 μg aflatoxin B1 kg dry mass-1) as the presence of mycotoxins in the substrate did not affect BSFL mass at harvest. Product safety was assessed by quantifying the presence of 38 common and emerging mycotoxins and metabolites in the maize, substrates and BSFL products (e.g. larvae and frass). The results show that it is possible to produce feed and fertilizer with BSFL considered safe within the European Union and East African legal limits with maize contaminated with mycotoxins typical for East Africa. Thereby, this research works towards the safe recycling of nutrients from mycotoxin contaminated maize within the food system in East Africa and beyond.","PeriodicalId":48604,"journal":{"name":"Journal of Insects as Food and Feed","volume":"85 23","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of mycotoxin-contaminated maize by black soldier fly larvae into feed and fertilizer\",\"authors\":\"M. Gold, K. Niermans, F. Jooste, L. Stanford, F. Uwamahoro, M. Wanja, T. Veldkamp, A. Sanderson, V. Dos Santos Nunes, A. Mathys, H. van der Fels-Klerx, E. F. Hoek-van den Hil, K. Nishimwe\",\"doi\":\"10.1163/23524588-00001006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nGlobally, large amounts of various crops such as cereals, oilseeds, nuts and spices are contaminated with mycotoxins during pre-harvest, postharvest handling, processing and/or storage. Mycotoxin contamination results into economic and health issues, and valorisation options of contaminated crops are urgently needed. The aim of this research was to evaluate whether quality feed and fertilizer can be safely produced from naturally mycotoxin contaminated crops using black soldier fly larvae (BSFL, Hermetia illucens L.) under realistic field conditions in East Africa. Naturally mycotoxin contaminated maize (corn; Zea mays L.) was used as a model due its prevalence as food and feed and utilized by BSFL together with local agri-food by-products at a research facility in Rwanda. To assess the influence of the initial maize mycotoxin contamination and maize inclusion, larval diets with three mycotoxin contamination levels and two maize inclusion levels were tested. BSFL were tolerant against the high mycotoxin concentrations (e.g. 99.4 μg aflatoxin B1 kg dry mass-1) as the presence of mycotoxins in the substrate did not affect BSFL mass at harvest. Product safety was assessed by quantifying the presence of 38 common and emerging mycotoxins and metabolites in the maize, substrates and BSFL products (e.g. larvae and frass). The results show that it is possible to produce feed and fertilizer with BSFL considered safe within the European Union and East African legal limits with maize contaminated with mycotoxins typical for East Africa. Thereby, this research works towards the safe recycling of nutrients from mycotoxin contaminated maize within the food system in East Africa and beyond.\",\"PeriodicalId\":48604,\"journal\":{\"name\":\"Journal of Insects as Food and Feed\",\"volume\":\"85 23\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insects as Food and Feed\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1163/23524588-00001006\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insects as Food and Feed","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1163/23524588-00001006","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Conversion of mycotoxin-contaminated maize by black soldier fly larvae into feed and fertilizer
Globally, large amounts of various crops such as cereals, oilseeds, nuts and spices are contaminated with mycotoxins during pre-harvest, postharvest handling, processing and/or storage. Mycotoxin contamination results into economic and health issues, and valorisation options of contaminated crops are urgently needed. The aim of this research was to evaluate whether quality feed and fertilizer can be safely produced from naturally mycotoxin contaminated crops using black soldier fly larvae (BSFL, Hermetia illucens L.) under realistic field conditions in East Africa. Naturally mycotoxin contaminated maize (corn; Zea mays L.) was used as a model due its prevalence as food and feed and utilized by BSFL together with local agri-food by-products at a research facility in Rwanda. To assess the influence of the initial maize mycotoxin contamination and maize inclusion, larval diets with three mycotoxin contamination levels and two maize inclusion levels were tested. BSFL were tolerant against the high mycotoxin concentrations (e.g. 99.4 μg aflatoxin B1 kg dry mass-1) as the presence of mycotoxins in the substrate did not affect BSFL mass at harvest. Product safety was assessed by quantifying the presence of 38 common and emerging mycotoxins and metabolites in the maize, substrates and BSFL products (e.g. larvae and frass). The results show that it is possible to produce feed and fertilizer with BSFL considered safe within the European Union and East African legal limits with maize contaminated with mycotoxins typical for East Africa. Thereby, this research works towards the safe recycling of nutrients from mycotoxin contaminated maize within the food system in East Africa and beyond.
期刊介绍:
The Journal of Insects as Food and Feed covers edible insects from harvesting in the wild through to industrial scale production. It publishes contributions to understanding the ecology and biology of edible insects and the factors that determine their abundance, the importance of food insects in people’s livelihoods, the value of ethno-entomological knowledge, and the role of technology transfer to assist people to utilise traditional knowledge to improve the value of insect foods in their lives. The journal aims to cover the whole chain of insect collecting or rearing to marketing edible insect products, including the development of sustainable technology, such as automation processes at affordable costs, detection, identification and mitigating of microbial contaminants, development of protocols for quality control, processing methodologies and how they affect digestibility and nutritional composition of insects, and the potential of insects to transform low value organic wastes into high protein products. At the end of the edible insect food or feed chain, marketing issues, consumer acceptance, regulation and legislation pose new research challenges. Food safety and legislation are intimately related. Consumer attitude is strongly dependent on the perceived safety. Microbial safety, toxicity due to chemical contaminants, and allergies are important issues in safety of insects as food and feed. Innovative contributions that address the multitude of aspects relevant for the utilisation of insects in increasing food and feed quality, safety and security are welcomed.