Xingyuan Wang, Zhifeng Lou, Yue Wang, Lixun Zhang, Tian Lin
{"title":"混合润滑接触界面的改进声学模型","authors":"Xingyuan Wang, Zhifeng Lou, Yue Wang, Lixun Zhang, Tian Lin","doi":"10.1177/13506501231218315","DOIUrl":null,"url":null,"abstract":"Mixed lubrication interfaces are widespread in engineering. The measurement of contact stiffness is a challenge for device performance evaluation. The ultrasonic reflection method is an effective method, but the difficulty of accurate construction of the acoustic model limits the measurement accuracy. In this study, an improved acoustic model is proposed to analyze the contact stiffness of the mixed lubrication interface. The model is constructed using a quasi-static spring model, virtual material model, statistical microcontact model, and multilayer acoustic model. The mixed lubrication interface is equivalent to a homogeneous and isotropic virtual material layer. Then, the mechanical, geometric, and acoustic parameters of the virtual layer are determined by introducing thickness coefficients. The contact stiffness is obtained with the proposed model and compared with the quasi-static spring model and the virtual material layer model. The reflection coefficient of the interface can also be calculated using a multilayer acoustic model based on the calculated parameters. The proposed model is verified by comparing the predicted reflection coefficients with the published experimental results.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved acoustic model for mixed lubrication contact interface\",\"authors\":\"Xingyuan Wang, Zhifeng Lou, Yue Wang, Lixun Zhang, Tian Lin\",\"doi\":\"10.1177/13506501231218315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed lubrication interfaces are widespread in engineering. The measurement of contact stiffness is a challenge for device performance evaluation. The ultrasonic reflection method is an effective method, but the difficulty of accurate construction of the acoustic model limits the measurement accuracy. In this study, an improved acoustic model is proposed to analyze the contact stiffness of the mixed lubrication interface. The model is constructed using a quasi-static spring model, virtual material model, statistical microcontact model, and multilayer acoustic model. The mixed lubrication interface is equivalent to a homogeneous and isotropic virtual material layer. Then, the mechanical, geometric, and acoustic parameters of the virtual layer are determined by introducing thickness coefficients. The contact stiffness is obtained with the proposed model and compared with the quasi-static spring model and the virtual material layer model. The reflection coefficient of the interface can also be calculated using a multilayer acoustic model based on the calculated parameters. The proposed model is verified by comparing the predicted reflection coefficients with the published experimental results.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231218315\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231218315","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An improved acoustic model for mixed lubrication contact interface
Mixed lubrication interfaces are widespread in engineering. The measurement of contact stiffness is a challenge for device performance evaluation. The ultrasonic reflection method is an effective method, but the difficulty of accurate construction of the acoustic model limits the measurement accuracy. In this study, an improved acoustic model is proposed to analyze the contact stiffness of the mixed lubrication interface. The model is constructed using a quasi-static spring model, virtual material model, statistical microcontact model, and multilayer acoustic model. The mixed lubrication interface is equivalent to a homogeneous and isotropic virtual material layer. Then, the mechanical, geometric, and acoustic parameters of the virtual layer are determined by introducing thickness coefficients. The contact stiffness is obtained with the proposed model and compared with the quasi-static spring model and the virtual material layer model. The reflection coefficient of the interface can also be calculated using a multilayer acoustic model based on the calculated parameters. The proposed model is verified by comparing the predicted reflection coefficients with the published experimental results.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).