用于电子光学有效载荷的六脚架隔振系统的优化设计

IF 5.3 1区 工程技术 Q1 ENGINEERING, AEROSPACE Chinese Journal of Aeronautics Pub Date : 2023-12-06 DOI:10.1016/j.cja.2023.12.003
Jing LI, Weipeng LI, Xiaoyan ZHANG, Hai HUANG
{"title":"用于电子光学有效载荷的六脚架隔振系统的优化设计","authors":"Jing LI,&nbsp;Weipeng LI,&nbsp;Xiaoyan ZHANG,&nbsp;Hai HUANG","doi":"10.1016/j.cja.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence. These vibrations are in six degrees of freedom and cause line-of-sight jitters, resulting in image blurring and loss of tracking accuracy. In this paper, a Hexapod Vibration Isolation System (HVIS) is proposed and optimized to solve this problem. The optimization aims to centralize and minimize the natural frequencies of HVIS, for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band. Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform, a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design. The optimization result shows that the natural frequency bandwidth has been reduced by 42.9 %, and the maximum natural frequency is reduced by 30.2 %. The prototypes of initial and optimal designs are manufactured and tested. Both simulated and experimental results demonstrate the validity of the optimization, and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.</p></div>","PeriodicalId":55631,"journal":{"name":"Chinese Journal of Aeronautics","volume":"37 2","pages":"Pages 330-342"},"PeriodicalIF":5.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1000936123004181/pdfft?md5=2dc8d7d4fb033c58e4d9eb1794748338&pid=1-s2.0-S1000936123004181-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design optimization of a hexapod vibration isolation system for electro-optical payload\",\"authors\":\"Jing LI,&nbsp;Weipeng LI,&nbsp;Xiaoyan ZHANG,&nbsp;Hai HUANG\",\"doi\":\"10.1016/j.cja.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence. These vibrations are in six degrees of freedom and cause line-of-sight jitters, resulting in image blurring and loss of tracking accuracy. In this paper, a Hexapod Vibration Isolation System (HVIS) is proposed and optimized to solve this problem. The optimization aims to centralize and minimize the natural frequencies of HVIS, for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band. Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform, a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design. The optimization result shows that the natural frequency bandwidth has been reduced by 42.9 %, and the maximum natural frequency is reduced by 30.2 %. The prototypes of initial and optimal designs are manufactured and tested. Both simulated and experimental results demonstrate the validity of the optimization, and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.</p></div>\",\"PeriodicalId\":55631,\"journal\":{\"name\":\"Chinese Journal of Aeronautics\",\"volume\":\"37 2\",\"pages\":\"Pages 330-342\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1000936123004181/pdfft?md5=2dc8d7d4fb033c58e4d9eb1794748338&pid=1-s2.0-S1000936123004181-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Aeronautics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000936123004181\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Aeronautics","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000936123004181","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

移动平台上的电子光学有效载荷通常会受到机动和湍流产生的不良振动的影响。这些振动具有六个自由度,会造成视线抖动,导致图像模糊和跟踪精度下降。本文提出并优化了六足架振动隔离系统(HVIS),以解决这一问题。优化的目的是集中并最小化 HVIS 的固有频率,以扩大隔振带宽并提高高频段的隔振效果。考虑到 HVIS 的设计空间有限且与移动平台的框架相互干扰,提出了一种非碰撞算法并将其应用于优化,以获得可行的最优设计。优化结果表明,固有频率带宽降低了 42.9%,最大固有频率降低了 30.2%。对初始设计和优化设计的原型进行了制造和测试。模拟和实验结果都证明了优化的有效性,与初始设计相比,优化设计在旋转方向上的隔离度最多提高了 15 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design optimization of a hexapod vibration isolation system for electro-optical payload

The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence. These vibrations are in six degrees of freedom and cause line-of-sight jitters, resulting in image blurring and loss of tracking accuracy. In this paper, a Hexapod Vibration Isolation System (HVIS) is proposed and optimized to solve this problem. The optimization aims to centralize and minimize the natural frequencies of HVIS, for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band. Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform, a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design. The optimization result shows that the natural frequency bandwidth has been reduced by 42.9 %, and the maximum natural frequency is reduced by 30.2 %. The prototypes of initial and optimal designs are manufactured and tested. Both simulated and experimental results demonstrate the validity of the optimization, and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Aeronautics
Chinese Journal of Aeronautics 工程技术-工程:宇航
CiteScore
10.00
自引率
17.50%
发文量
3080
审稿时长
55 days
期刊介绍: Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice, such as theoretical research articles, experiment ones, research notes, comprehensive reviews, technological briefs and other reports on the latest developments and everything related to the fields of aeronautics and astronautics, as well as those ground equipment concerned.
期刊最新文献
Editorial Board - Inside Front Cover Table of Content Inhibiting plastic tensile instability of non-symmetric thin-walled shell component via increasing regional metal inflow based on heterogeneous pressure-carrying medium Technologies and studies of gas exchange in two-stroke aircraft piston engine: A review Mechanism of capture section affecting an intake for atmosphere-breathing electric propulsion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1