{"title":"深度学习无监督传输方法支持的篮球步法与应用","authors":"Yu Feng, Hui Sun","doi":"10.4018/ijitwe.334365","DOIUrl":null,"url":null,"abstract":"The combination of traditional basketball footwork mobile teaching and AI will become a hot spot in basketball footwork research. This article used a deep learning (DL) unsupervised transfer method: Convolutional neural networks are used to extract source and target domain samples for transfer learning. Feature extraction is performed on the data, and the impending action of a basketball player is predicted. Meanwhile, the unsupervised human action transfer method is studied to provide new ideas for basketball footwork action series data modeling. Finally, the theoretical framework of DL unsupervised transfer learning is reviewed. Its principle is explored and applied in the teaching of basketball footwork. The results show that convolutional neural networks can predict players' movement trajectories, unsupervised training using network data dramatically increases the variety of actions during training. The classification accuracy of the transfer learning method is high, and it can be used for the different basketball footwork in the corresponding stage of the court.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":" 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basketball Footwork and Application Supported by Deep Learning Unsupervised Transfer Method\",\"authors\":\"Yu Feng, Hui Sun\",\"doi\":\"10.4018/ijitwe.334365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of traditional basketball footwork mobile teaching and AI will become a hot spot in basketball footwork research. This article used a deep learning (DL) unsupervised transfer method: Convolutional neural networks are used to extract source and target domain samples for transfer learning. Feature extraction is performed on the data, and the impending action of a basketball player is predicted. Meanwhile, the unsupervised human action transfer method is studied to provide new ideas for basketball footwork action series data modeling. Finally, the theoretical framework of DL unsupervised transfer learning is reviewed. Its principle is explored and applied in the teaching of basketball footwork. The results show that convolutional neural networks can predict players' movement trajectories, unsupervised training using network data dramatically increases the variety of actions during training. The classification accuracy of the transfer learning method is high, and it can be used for the different basketball footwork in the corresponding stage of the court.\",\"PeriodicalId\":51925,\"journal\":{\"name\":\"International Journal of Information Technology and Web Engineering\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Web Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.334365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.334365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Basketball Footwork and Application Supported by Deep Learning Unsupervised Transfer Method
The combination of traditional basketball footwork mobile teaching and AI will become a hot spot in basketball footwork research. This article used a deep learning (DL) unsupervised transfer method: Convolutional neural networks are used to extract source and target domain samples for transfer learning. Feature extraction is performed on the data, and the impending action of a basketball player is predicted. Meanwhile, the unsupervised human action transfer method is studied to provide new ideas for basketball footwork action series data modeling. Finally, the theoretical framework of DL unsupervised transfer learning is reviewed. Its principle is explored and applied in the teaching of basketball footwork. The results show that convolutional neural networks can predict players' movement trajectories, unsupervised training using network data dramatically increases the variety of actions during training. The classification accuracy of the transfer learning method is high, and it can be used for the different basketball footwork in the corresponding stage of the court.
期刊介绍:
Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.