利用无线传感器网络中的移动数据采集器为数据采集构建节能路径

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Radioengineering Pub Date : 2023-12-01 DOI:10.13164/re.2023.0502
W. Jlassi, R. Haddad, R. Bouallegue
{"title":"利用无线传感器网络中的移动数据采集器为数据采集构建节能路径","authors":"W. Jlassi, R. Haddad, R. Bouallegue","doi":"10.13164/re.2023.0502","DOIUrl":null,"url":null,"abstract":". Energy is seen as a significant factor in wireless sensor networks (WSNs). It is a challenge to balance be-tween battery lifetime of the different sensors and network lifetime. The main contribution of the proposed approach is to decrease the energy consumption of each sensor node, overcome unbalanced energy usage among sensor nodes, reduce the data gathering time and enhance the network life-time. To achieve these goals, we combine the Hierarchical Agglomerative algorithm and an optimal path selection method. First, the suitable cluster heads (CHs) are elected based on the Euclidean distance and the residual energy of each sensor node. Then, the base station is situated at the center of the field, which will be partitioned into equal sub-areas, one for every mobile data collector (MDC). Second, the Kruskal algorithm is used to create an optimal data gathering path from each subset of elected cluster heads. Finally, each mobile data collector travels the optimal path to collect the data from the set of cluster heads of each subarea and returns periodically to the base station to upload gathered data. Computer simulation proves that the proposed approach outperforms existing ones in terms of data gathering time, residual energy and network lifetime.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Path Construction for Data Gathering Using Mobile Data Collectors in Wireless Sensor Networks\",\"authors\":\"W. Jlassi, R. Haddad, R. Bouallegue\",\"doi\":\"10.13164/re.2023.0502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Energy is seen as a significant factor in wireless sensor networks (WSNs). It is a challenge to balance be-tween battery lifetime of the different sensors and network lifetime. The main contribution of the proposed approach is to decrease the energy consumption of each sensor node, overcome unbalanced energy usage among sensor nodes, reduce the data gathering time and enhance the network life-time. To achieve these goals, we combine the Hierarchical Agglomerative algorithm and an optimal path selection method. First, the suitable cluster heads (CHs) are elected based on the Euclidean distance and the residual energy of each sensor node. Then, the base station is situated at the center of the field, which will be partitioned into equal sub-areas, one for every mobile data collector (MDC). Second, the Kruskal algorithm is used to create an optimal data gathering path from each subset of elected cluster heads. Finally, each mobile data collector travels the optimal path to collect the data from the set of cluster heads of each subarea and returns periodically to the base station to upload gathered data. Computer simulation proves that the proposed approach outperforms existing ones in terms of data gathering time, residual energy and network lifetime.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0502\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0502","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

. 在无线传感器网络(WSNs)中,能量被视为一个重要的因素。如何平衡不同传感器的电池寿命和网络寿命是一个挑战。该方法的主要贡献在于降低每个传感器节点的能量消耗,克服传感器节点之间的能量使用不平衡,减少数据收集时间,提高网络寿命。为了实现这些目标,我们将分层聚类算法与最优路径选择方法相结合。首先,根据欧几里得距离和每个传感器节点的剩余能量选择合适的簇头(CHs);然后,基站位于场地的中心,场地将被划分为相等的子区域,每个移动数据采集器(MDC)一个子区域。其次,使用Kruskal算法从每个选出的簇头子集中创建最优数据收集路径。最后,每个移动数据采集器沿着最优路径从每个子区域的簇头集合中收集数据,并定期返回基站上传收集到的数据。计算机仿真结果表明,该方法在数据采集时间、剩余能量和网络寿命方面都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Efficient Path Construction for Data Gathering Using Mobile Data Collectors in Wireless Sensor Networks
. Energy is seen as a significant factor in wireless sensor networks (WSNs). It is a challenge to balance be-tween battery lifetime of the different sensors and network lifetime. The main contribution of the proposed approach is to decrease the energy consumption of each sensor node, overcome unbalanced energy usage among sensor nodes, reduce the data gathering time and enhance the network life-time. To achieve these goals, we combine the Hierarchical Agglomerative algorithm and an optimal path selection method. First, the suitable cluster heads (CHs) are elected based on the Euclidean distance and the residual energy of each sensor node. Then, the base station is situated at the center of the field, which will be partitioned into equal sub-areas, one for every mobile data collector (MDC). Second, the Kruskal algorithm is used to create an optimal data gathering path from each subset of elected cluster heads. Finally, each mobile data collector travels the optimal path to collect the data from the set of cluster heads of each subarea and returns periodically to the base station to upload gathered data. Computer simulation proves that the proposed approach outperforms existing ones in terms of data gathering time, residual energy and network lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
期刊最新文献
Test Evaluation Method for Second-order Intermodulation False Alarm Interference Performance of the User in the TDD NOMA Cellular Networks Enabling FFR An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions Reconstruction of Mixed Boundary Objects and Classification Using Deep Learning and Linear Sampling Method Coverless Steganography Based on Low Similarity Feature Selection in DCT Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1