Z. T. Kenzhaev, N. F. Zikrillaev, K. S. Ayupov, K. A. Ismailov, S. V. Koveshnikov, T. B. Ismailov
{"title":"通过掺镍提高硅太阳能电池的效率","authors":"Z. T. Kenzhaev, N. F. Zikrillaev, K. S. Ayupov, K. A. Ismailov, S. V. Koveshnikov, T. B. Ismailov","doi":"10.3103/S1068375523060108","DOIUrl":null,"url":null,"abstract":"<p>It was demonstrated that the concentration of nickel atoms near the surface of solar cells (SCs) is higher by 2–3 orders of magnitude in comparison with the bulk material, resulting in a significantly increased gettering rate in the former case. Experiments determined the optimal gettering conditions for nickel clusters (nickel diffusion temperature 800–850°C and additional thermal annealing temperature 750–800°C) and the structure of a silicon SC that enhances its efficiency by 25–30% in comparison with the reference structure. Physical mechanisms were identified for the effect of the diffusion of nickel impurity atoms and additional thermal annealing on the state of nickel atoms near the surface and the SC base and, consequently, on SC parameters. Physical models were developed for the structure of a cluster of nickel atoms in silicon and for the gettering process of fast-diffusing impurities by clusters of nickel atoms. The binding energy of fast-diffusing impurity atoms with a nickel cluster was estimated to be approximately 1.39 eV. Calculations showed that nickel doping can increase the minority carrier lifetime and the collection coefficient by factors of 2–4 and 1.4–2, respectively. Experiments demonstrated a twofold increase in minority carrier lifetime and a 25–30% improvement in the efficiency of SCs.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 6","pages":"858 - 866"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Efficiency of Silicon Solar Cells through Nickel Doping\",\"authors\":\"Z. T. Kenzhaev, N. F. Zikrillaev, K. S. Ayupov, K. A. Ismailov, S. V. Koveshnikov, T. B. Ismailov\",\"doi\":\"10.3103/S1068375523060108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It was demonstrated that the concentration of nickel atoms near the surface of solar cells (SCs) is higher by 2–3 orders of magnitude in comparison with the bulk material, resulting in a significantly increased gettering rate in the former case. Experiments determined the optimal gettering conditions for nickel clusters (nickel diffusion temperature 800–850°C and additional thermal annealing temperature 750–800°C) and the structure of a silicon SC that enhances its efficiency by 25–30% in comparison with the reference structure. Physical mechanisms were identified for the effect of the diffusion of nickel impurity atoms and additional thermal annealing on the state of nickel atoms near the surface and the SC base and, consequently, on SC parameters. Physical models were developed for the structure of a cluster of nickel atoms in silicon and for the gettering process of fast-diffusing impurities by clusters of nickel atoms. The binding energy of fast-diffusing impurity atoms with a nickel cluster was estimated to be approximately 1.39 eV. Calculations showed that nickel doping can increase the minority carrier lifetime and the collection coefficient by factors of 2–4 and 1.4–2, respectively. Experiments demonstrated a twofold increase in minority carrier lifetime and a 25–30% improvement in the efficiency of SCs.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"59 6\",\"pages\":\"858 - 866\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375523060108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375523060108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Enhancing the Efficiency of Silicon Solar Cells through Nickel Doping
It was demonstrated that the concentration of nickel atoms near the surface of solar cells (SCs) is higher by 2–3 orders of magnitude in comparison with the bulk material, resulting in a significantly increased gettering rate in the former case. Experiments determined the optimal gettering conditions for nickel clusters (nickel diffusion temperature 800–850°C and additional thermal annealing temperature 750–800°C) and the structure of a silicon SC that enhances its efficiency by 25–30% in comparison with the reference structure. Physical mechanisms were identified for the effect of the diffusion of nickel impurity atoms and additional thermal annealing on the state of nickel atoms near the surface and the SC base and, consequently, on SC parameters. Physical models were developed for the structure of a cluster of nickel atoms in silicon and for the gettering process of fast-diffusing impurities by clusters of nickel atoms. The binding energy of fast-diffusing impurity atoms with a nickel cluster was estimated to be approximately 1.39 eV. Calculations showed that nickel doping can increase the minority carrier lifetime and the collection coefficient by factors of 2–4 and 1.4–2, respectively. Experiments demonstrated a twofold increase in minority carrier lifetime and a 25–30% improvement in the efficiency of SCs.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.