O. E. Tchufistov, V. N. Malyshev, A. N. Zolkin, E. A. Tchufistov
{"title":"提高通过电解氧化方法在长形产品内表面形成的氧化物涂层的质量","authors":"O. E. Tchufistov, V. N. Malyshev, A. N. Zolkin, E. A. Tchufistov","doi":"10.3103/S1068375523060169","DOIUrl":null,"url":null,"abstract":"<p>It is known that the methods of electrolytic oxidation, including traditional anodizing and microarc oxidation, implemented according to classical schemes in electrolytic baths with mechanical, pneumatic, and magnetic mixers, cannot provide high-quality homogeneous oxide coatings on the inner surfaces of products made from valve metal alloys. In this paper, the principal possibility of obtaining high-quality uniform coatings on the extended internal surfaces of products, including the surfaces of deep holes, when an electrolyte solution is passed through them, is revealed. It has been experimentally proved that, based on the proposed approach, it is possible to process products with deep holes, achieving a ratio of both minimum and maximum values of the thickness and the breakdown voltage of coatings on the internal and external surfaces in a range of 0.85–0.93. A possibility of forming coatings exclusively on the internal surfaces of products without changing the state of their external surfaces, moreover, without using expensive electrolytic baths—inside internal cavities of products themselves, is shown. A good correlation between the values of the thickness and of the breakdown voltage of coatings has been established. As a result, a possibility of indirectly determine the coatings thickness based on the results of their breakdown voltage measuring has been substantiated.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 6","pages":"728 - 733"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Oxide Coatings Quality Formed by Electrolytic Oxidation Methods on Inner Surfaces of Lengthy Products\",\"authors\":\"O. E. Tchufistov, V. N. Malyshev, A. N. Zolkin, E. A. Tchufistov\",\"doi\":\"10.3103/S1068375523060169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that the methods of electrolytic oxidation, including traditional anodizing and microarc oxidation, implemented according to classical schemes in electrolytic baths with mechanical, pneumatic, and magnetic mixers, cannot provide high-quality homogeneous oxide coatings on the inner surfaces of products made from valve metal alloys. In this paper, the principal possibility of obtaining high-quality uniform coatings on the extended internal surfaces of products, including the surfaces of deep holes, when an electrolyte solution is passed through them, is revealed. It has been experimentally proved that, based on the proposed approach, it is possible to process products with deep holes, achieving a ratio of both minimum and maximum values of the thickness and the breakdown voltage of coatings on the internal and external surfaces in a range of 0.85–0.93. A possibility of forming coatings exclusively on the internal surfaces of products without changing the state of their external surfaces, moreover, without using expensive electrolytic baths—inside internal cavities of products themselves, is shown. A good correlation between the values of the thickness and of the breakdown voltage of coatings has been established. As a result, a possibility of indirectly determine the coatings thickness based on the results of their breakdown voltage measuring has been substantiated.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"59 6\",\"pages\":\"728 - 733\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375523060169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375523060169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Enhancement of Oxide Coatings Quality Formed by Electrolytic Oxidation Methods on Inner Surfaces of Lengthy Products
It is known that the methods of electrolytic oxidation, including traditional anodizing and microarc oxidation, implemented according to classical schemes in electrolytic baths with mechanical, pneumatic, and magnetic mixers, cannot provide high-quality homogeneous oxide coatings on the inner surfaces of products made from valve metal alloys. In this paper, the principal possibility of obtaining high-quality uniform coatings on the extended internal surfaces of products, including the surfaces of deep holes, when an electrolyte solution is passed through them, is revealed. It has been experimentally proved that, based on the proposed approach, it is possible to process products with deep holes, achieving a ratio of both minimum and maximum values of the thickness and the breakdown voltage of coatings on the internal and external surfaces in a range of 0.85–0.93. A possibility of forming coatings exclusively on the internal surfaces of products without changing the state of their external surfaces, moreover, without using expensive electrolytic baths—inside internal cavities of products themselves, is shown. A good correlation between the values of the thickness and of the breakdown voltage of coatings has been established. As a result, a possibility of indirectly determine the coatings thickness based on the results of their breakdown voltage measuring has been substantiated.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.