Bokai Gong, Wenfeng Jia, Yang Zhou, Yanyan Xu, Ya Wei, Huile Gao
{"title":"通过重组肿瘤微环境提高免疫疗法的疗效","authors":"Bokai Gong, Wenfeng Jia, Yang Zhou, Yanyan Xu, Ya Wei, Huile Gao","doi":"10.1002/anbr.202300061","DOIUrl":null,"url":null,"abstract":"<p>\nThe therapeutic modes of cancers have been profoundly renovated by immunotherapies, which have shown extraordinary treating efficacy in certain tumor entities. However, the majority of cancer patients have not profited from it because of the negative effects of tumor microenvironment (TME) on human innate and/or adaptive immunity, including hypoxia, acidification, irregular vasculature, and a plethora of immunosuppressive cells and small molecules, which contribute to tumor progression, migration, resistance to drug, and so forth. Accordingly, it is feasible to enhance the efficacy of immunotherapies and increase the patients’ survival through the restructure of TME. Herein, the mechanisms and reverberations of aforementioned immunosuppressive elements are concentrated on, and latest therapeutic achievements and combined technologies that have been demonstrated effective in boosting immunotherapies by TME modulation are enumerated.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300061","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Treating Efficacy of Immunotherapy through the Restructure of Tumor Microenvironment\",\"authors\":\"Bokai Gong, Wenfeng Jia, Yang Zhou, Yanyan Xu, Ya Wei, Huile Gao\",\"doi\":\"10.1002/anbr.202300061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nThe therapeutic modes of cancers have been profoundly renovated by immunotherapies, which have shown extraordinary treating efficacy in certain tumor entities. However, the majority of cancer patients have not profited from it because of the negative effects of tumor microenvironment (TME) on human innate and/or adaptive immunity, including hypoxia, acidification, irregular vasculature, and a plethora of immunosuppressive cells and small molecules, which contribute to tumor progression, migration, resistance to drug, and so forth. Accordingly, it is feasible to enhance the efficacy of immunotherapies and increase the patients’ survival through the restructure of TME. Herein, the mechanisms and reverberations of aforementioned immunosuppressive elements are concentrated on, and latest therapeutic achievements and combined technologies that have been demonstrated effective in boosting immunotherapies by TME modulation are enumerated.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"3 12\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing the Treating Efficacy of Immunotherapy through the Restructure of Tumor Microenvironment
The therapeutic modes of cancers have been profoundly renovated by immunotherapies, which have shown extraordinary treating efficacy in certain tumor entities. However, the majority of cancer patients have not profited from it because of the negative effects of tumor microenvironment (TME) on human innate and/or adaptive immunity, including hypoxia, acidification, irregular vasculature, and a plethora of immunosuppressive cells and small molecules, which contribute to tumor progression, migration, resistance to drug, and so forth. Accordingly, it is feasible to enhance the efficacy of immunotherapies and increase the patients’ survival through the restructure of TME. Herein, the mechanisms and reverberations of aforementioned immunosuppressive elements are concentrated on, and latest therapeutic achievements and combined technologies that have been demonstrated effective in boosting immunotherapies by TME modulation are enumerated.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.