控制试样的方向和环境。

J N Turner, U Valdrè, A Fukami
{"title":"控制试样的方向和环境。","authors":"J N Turner,&nbsp;U Valdrè,&nbsp;A Fukami","doi":"10.1002/jemt.1060110405","DOIUrl":null,"url":null,"abstract":"<p><p>Application of electron microscopy in a wide variety of fields of investigation has placed ever-expanding demands on the various components of the instrument. In situ specimen manipulation is one such demand and can often be critical to the success of an experiment. Control of specimen orientation is the most common manipulation, but control of a variety of other physical and chemical parameters may also be important. Temperature, gaseous and/or liquid environment, and mechanical operations are examples. Control and variation of these parameters in a small device (occupying a few cm3) operated in a strong magnetic field inside a vacuum system is often a considerable challenge. This must also be done at extreme stability: at least as good as the resolution limit of the microscope. Optimization of stage performance is too often sacrificed for optical performance or vice versa. The next generation of objective lenses and specimen stages are being designed in concert: an approach which should lead to an improved in situ laboratory, observed with optimum optics.</p>","PeriodicalId":15690,"journal":{"name":"Journal of electron microscopy technique","volume":"11 4","pages":"258-71"},"PeriodicalIF":0.0000,"publicationDate":"1989-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Control of specimen orientation and environment.\",\"authors\":\"J N Turner,&nbsp;U Valdrè,&nbsp;A Fukami\",\"doi\":\"10.1002/jemt.1060110405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Application of electron microscopy in a wide variety of fields of investigation has placed ever-expanding demands on the various components of the instrument. In situ specimen manipulation is one such demand and can often be critical to the success of an experiment. Control of specimen orientation is the most common manipulation, but control of a variety of other physical and chemical parameters may also be important. Temperature, gaseous and/or liquid environment, and mechanical operations are examples. Control and variation of these parameters in a small device (occupying a few cm3) operated in a strong magnetic field inside a vacuum system is often a considerable challenge. This must also be done at extreme stability: at least as good as the resolution limit of the microscope. Optimization of stage performance is too often sacrificed for optical performance or vice versa. The next generation of objective lenses and specimen stages are being designed in concert: an approach which should lead to an improved in situ laboratory, observed with optimum optics.</p>\",\"PeriodicalId\":15690,\"journal\":{\"name\":\"Journal of electron microscopy technique\",\"volume\":\"11 4\",\"pages\":\"258-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electron microscopy technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.1060110405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electron microscopy technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jemt.1060110405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

电子显微镜在各种研究领域的广泛应用对仪器的各种组成部分提出了不断扩大的要求。原位标本操作就是这样一种需求,并且通常对实验的成功至关重要。试样取向的控制是最常见的操作,但各种其他物理和化学参数的控制也可能是重要的。温度、气体和/或液体环境以及机械操作都是例子。在真空系统内的强磁场中操作的小型装置(占用几cm3)中控制和改变这些参数通常是一个相当大的挑战。这也必须在极端的稳定性下完成:至少与显微镜的分辨率极限一样好。舞台性能的优化往往牺牲光学性能,反之亦然。下一代物镜和标本台正在协同设计中:这种方法将导致一个改进的原位实验室,用最佳光学观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control of specimen orientation and environment.

Application of electron microscopy in a wide variety of fields of investigation has placed ever-expanding demands on the various components of the instrument. In situ specimen manipulation is one such demand and can often be critical to the success of an experiment. Control of specimen orientation is the most common manipulation, but control of a variety of other physical and chemical parameters may also be important. Temperature, gaseous and/or liquid environment, and mechanical operations are examples. Control and variation of these parameters in a small device (occupying a few cm3) operated in a strong magnetic field inside a vacuum system is often a considerable challenge. This must also be done at extreme stability: at least as good as the resolution limit of the microscope. Optimization of stage performance is too often sacrificed for optical performance or vice versa. The next generation of objective lenses and specimen stages are being designed in concert: an approach which should lead to an improved in situ laboratory, observed with optimum optics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real time computer simulation of transmission electron microscope images with tilted illumination: grain boundary applications. Cryofixation of vascular endothelium. The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. Lectin and immunolabeling of microvascular endothelia. Quick-freeze, deep-etch studies of endothelial components, with special reference to cytoskeletons and vesicle structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1