{"title":"利用化学方法从碳酸盐岩尾矿中选择性去除铁杂质以回收稀土元素","authors":"Shuronjit Kumar Sarker , Mark Pownceby , Sachin Yadav , Warren Bruckard , Nawshad Haque , Nahar Singh , Biplob Kumar Pramanik","doi":"10.1016/j.hydromet.2023.106249","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The increasing demand for rare earth elements (REEs) has led to the exploration of mining tailings as a potential secondary source. This study offers novel insights into the recovery of REEs from Fe-rich mine tailings sourced from a weathered </span>carbonatite<span><span><span> deposit. The REEs were recovered by selectively removing Fe impurities after acid-leaching. The paper details the comprehensive methodologies employed, including initial hydrochloric acid </span>leaching and variable optimization such as acid concentration, liquid-to-solid ratio, temperature, and time. An alkali pre-treatment using NaOH was also investigated to assess its impact on the efficiency of REEs recovery. The study reveals that pH plays a significant role in the selective removal of Fe impurities and offers avenues for the production of high-purity, industry-grade REEs. The work is particularly ground-breaking in its exploration of selective Fe removal using a combination of dilute </span>ammonium hydroxide and </span></span>ammonium chloride<span>. Through this method, a significant milestone was achieved: the precipitated solid primarily contained Fe (>96%), with minimal loss of REEs (only 0.22%) at a solution pH of 3.25 at 40 °C. This study is the first to demonstrate such high selectivity in the removal of Fe from acid leach liquors of this nature.</span></p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective removal of Fe impurities in the recovery of rare earth elements from carbonatite tailings using chemical routes\",\"authors\":\"Shuronjit Kumar Sarker , Mark Pownceby , Sachin Yadav , Warren Bruckard , Nawshad Haque , Nahar Singh , Biplob Kumar Pramanik\",\"doi\":\"10.1016/j.hydromet.2023.106249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The increasing demand for rare earth elements (REEs) has led to the exploration of mining tailings as a potential secondary source. This study offers novel insights into the recovery of REEs from Fe-rich mine tailings sourced from a weathered </span>carbonatite<span><span><span> deposit. The REEs were recovered by selectively removing Fe impurities after acid-leaching. The paper details the comprehensive methodologies employed, including initial hydrochloric acid </span>leaching and variable optimization such as acid concentration, liquid-to-solid ratio, temperature, and time. An alkali pre-treatment using NaOH was also investigated to assess its impact on the efficiency of REEs recovery. The study reveals that pH plays a significant role in the selective removal of Fe impurities and offers avenues for the production of high-purity, industry-grade REEs. The work is particularly ground-breaking in its exploration of selective Fe removal using a combination of dilute </span>ammonium hydroxide and </span></span>ammonium chloride<span>. Through this method, a significant milestone was achieved: the precipitated solid primarily contained Fe (>96%), with minimal loss of REEs (only 0.22%) at a solution pH of 3.25 at 40 °C. This study is the first to demonstrate such high selectivity in the removal of Fe from acid leach liquors of this nature.</span></p></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X23002323\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X23002323","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Selective removal of Fe impurities in the recovery of rare earth elements from carbonatite tailings using chemical routes
The increasing demand for rare earth elements (REEs) has led to the exploration of mining tailings as a potential secondary source. This study offers novel insights into the recovery of REEs from Fe-rich mine tailings sourced from a weathered carbonatite deposit. The REEs were recovered by selectively removing Fe impurities after acid-leaching. The paper details the comprehensive methodologies employed, including initial hydrochloric acid leaching and variable optimization such as acid concentration, liquid-to-solid ratio, temperature, and time. An alkali pre-treatment using NaOH was also investigated to assess its impact on the efficiency of REEs recovery. The study reveals that pH plays a significant role in the selective removal of Fe impurities and offers avenues for the production of high-purity, industry-grade REEs. The work is particularly ground-breaking in its exploration of selective Fe removal using a combination of dilute ammonium hydroxide and ammonium chloride. Through this method, a significant milestone was achieved: the precipitated solid primarily contained Fe (>96%), with minimal loss of REEs (only 0.22%) at a solution pH of 3.25 at 40 °C. This study is the first to demonstrate such high selectivity in the removal of Fe from acid leach liquors of this nature.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.