斑马鱼 ABC 多药转运体的特征研究进展

IF 15.8 1区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Resistance Updates Pub Date : 2023-12-17 DOI:10.1016/j.drup.2023.101035
Joanna R. Thomas, William J.E. Frye, Robert W. Robey, Michael M. Gottesman
{"title":"斑马鱼 ABC 多药转运体的特征研究进展","authors":"Joanna R. Thomas,&nbsp;William J.E. Frye,&nbsp;Robert W. Robey,&nbsp;Michael M. Gottesman","doi":"10.1016/j.drup.2023.101035","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Zebrafish have proved to be invaluable for modeling complex physiological processes<span><span> shared by all vertebrate animals. Resistance of cancers and other diseases to drug treatment can occur owing to expression of the ATP-dependent multidrug transporters ABCB1, </span>ABCG2<span>, and ABCC1, either because of expression of these transporters by the target cells to reduce intracellular concentrations of </span></span></span>cytotoxic drugs<span><span> at barrier sites such as the blood-brain barrier (BBB) to limit penetration of drugs into privileged compartments, or by affecting the absorption, distribution, and excretion of drugs administered orally, through the skin, or directly into the bloodstream. We describe the drug specificity, </span>cellular localization, and function of zebrafish orthologs of </span></span>multidrug resistance<span><span> ABC transporters with the goal of developing zebrafish models to explore the physiological and pathophysiological functions of these transporters. Finally, we provide context demonstrating the utility of zebrafish in studying cancer drug resistance. Our ultimate goal is to improve </span>treatment of cancer and other diseases which are affected by ABC multidrug resistance transporters.</span></p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"72 ","pages":"Article 101035"},"PeriodicalIF":15.8000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in characterizing ABC multidrug transporters in zebrafish\",\"authors\":\"Joanna R. Thomas,&nbsp;William J.E. Frye,&nbsp;Robert W. Robey,&nbsp;Michael M. Gottesman\",\"doi\":\"10.1016/j.drup.2023.101035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Zebrafish have proved to be invaluable for modeling complex physiological processes<span><span> shared by all vertebrate animals. Resistance of cancers and other diseases to drug treatment can occur owing to expression of the ATP-dependent multidrug transporters ABCB1, </span>ABCG2<span>, and ABCC1, either because of expression of these transporters by the target cells to reduce intracellular concentrations of </span></span></span>cytotoxic drugs<span><span> at barrier sites such as the blood-brain barrier (BBB) to limit penetration of drugs into privileged compartments, or by affecting the absorption, distribution, and excretion of drugs administered orally, through the skin, or directly into the bloodstream. We describe the drug specificity, </span>cellular localization, and function of zebrafish orthologs of </span></span>multidrug resistance<span><span> ABC transporters with the goal of developing zebrafish models to explore the physiological and pathophysiological functions of these transporters. Finally, we provide context demonstrating the utility of zebrafish in studying cancer drug resistance. Our ultimate goal is to improve </span>treatment of cancer and other diseases which are affected by ABC multidrug resistance transporters.</span></p></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"72 \",\"pages\":\"Article 101035\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1368764623001188\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764623001188","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

斑马鱼在模拟所有脊椎动物共有的复杂生理过程方面已被证明是无价的。由于atp依赖性多药物转运体ABCB1、ABCG2和ABCC1的表达,癌症和其他疾病对药物治疗产生耐药性,或者是因为靶细胞表达这些转运体,以减少血脑屏障(BBB)等屏障部位细胞毒性药物的细胞内浓度,以限制药物进入特殊隔室,或者通过影响口服药物的吸收、分布和排泄。通过皮肤,或者直接进入血液。我们描述了多药耐药ABC转运体的斑马鱼同源物的药物特异性、细胞定位和功能,目的是建立斑马鱼模型来探索这些转运体的生理和病理生理功能。最后,我们提供了证明斑马鱼在研究癌症耐药性中的效用的背景。我们的最终目标是改善受ABC多药耐药转运体影响的癌症和其他疾病的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress in characterizing ABC multidrug transporters in zebrafish

Zebrafish have proved to be invaluable for modeling complex physiological processes shared by all vertebrate animals. Resistance of cancers and other diseases to drug treatment can occur owing to expression of the ATP-dependent multidrug transporters ABCB1, ABCG2, and ABCC1, either because of expression of these transporters by the target cells to reduce intracellular concentrations of cytotoxic drugs at barrier sites such as the blood-brain barrier (BBB) to limit penetration of drugs into privileged compartments, or by affecting the absorption, distribution, and excretion of drugs administered orally, through the skin, or directly into the bloodstream. We describe the drug specificity, cellular localization, and function of zebrafish orthologs of multidrug resistance ABC transporters with the goal of developing zebrafish models to explore the physiological and pathophysiological functions of these transporters. Finally, we provide context demonstrating the utility of zebrafish in studying cancer drug resistance. Our ultimate goal is to improve treatment of cancer and other diseases which are affected by ABC multidrug resistance transporters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Resistance Updates
Drug Resistance Updates 医学-药学
CiteScore
26.20
自引率
11.90%
发文量
32
审稿时长
29 days
期刊介绍: Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation. Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective. *Expert reviews in clinical and basic drug resistance research in oncology and infectious disease *Describes emerging technologies and therapies, particularly those that overcome drug resistance *Emphasises common themes in microbial and cancer research
期刊最新文献
Modeling the epidemiologic impact of age-targeted vaccination for drug-resistant tuberculosis TMOD3 accelerated resistance to immunotherapy in KRAS-mutated pancreatic cancer through promoting autophagy-dependent degradation of ASCL4 Editorial Board Revolutionising infection control: building the next generation of phage banks Targeting NQO1 induces ferroptosis and triggers anti-tumor immunity in immunotherapy-resistant KEAP1-deficient cancers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1