Rodrigo Rogerio Cerqueira da Silva, Raquel Gonçalves, Cinthya Bertoldo
{"title":"使用不同矿物质来源的粗骨料生产的混凝土的力学性能超声波测试","authors":"Rodrigo Rogerio Cerqueira da Silva, Raquel Gonçalves, Cinthya Bertoldo","doi":"10.1186/s40069-023-00630-3","DOIUrl":null,"url":null,"abstract":"<p>The use of nondestructive techniques in the technological control of concrete allows to evaluate and monitor the condition of the material without interfering with its properties; therefore, it is highly desirable in on-site inspections. Among these techniques, ultrasonic testing stands out as one of the most promising by its speed and simplicity to obtain results. However, inferences of strength and stiffness properties using ultrasound parameters should be made with caution, since many factors may interfere with wave propagation. This research aimed to evaluate the behavior of parameters obtained by ultrasonic testing (velocity of wave propagation [V] and stiffness coefficient [C = density × V<sup>2</sup>]) as predictors of the strength (f<sub>c</sub>) and stiffness (E<sub>ci</sub>) of concrete produced with coarse aggregates from different mineralogical origins. To achieve the objective, 128 specimens were produced with four aggregate mineralogical origins and four water-cement ratios, with 8 replications each. The ultrasonic tests were performed with two-frequency transducers (45 and 80 kHz). Prediction models of f<sub>c</sub> and E<sub>ci</sub> were statistically significant (P-value < 0,05) for both frequencies. The model using [C] as independent variable present better correlation with E<sub>ci</sub> (R<sup>2</sup> > 91,2%) and with f<sub>c</sub> (R<sup>2</sup> > 82%) than the model using only [V]. General regression models (regardless of the gravel type) were also statistically significant (P-value < 0.05), with R<sup>2</sup> > 79% and prediction errors higher than those obtained for the specific models for different rock types.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"3 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties of Concrete Produced with Coarse Aggregates from Different Mineralogical Origins Using Ultrasonic Tests\",\"authors\":\"Rodrigo Rogerio Cerqueira da Silva, Raquel Gonçalves, Cinthya Bertoldo\",\"doi\":\"10.1186/s40069-023-00630-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of nondestructive techniques in the technological control of concrete allows to evaluate and monitor the condition of the material without interfering with its properties; therefore, it is highly desirable in on-site inspections. Among these techniques, ultrasonic testing stands out as one of the most promising by its speed and simplicity to obtain results. However, inferences of strength and stiffness properties using ultrasound parameters should be made with caution, since many factors may interfere with wave propagation. This research aimed to evaluate the behavior of parameters obtained by ultrasonic testing (velocity of wave propagation [V] and stiffness coefficient [C = density × V<sup>2</sup>]) as predictors of the strength (f<sub>c</sub>) and stiffness (E<sub>ci</sub>) of concrete produced with coarse aggregates from different mineralogical origins. To achieve the objective, 128 specimens were produced with four aggregate mineralogical origins and four water-cement ratios, with 8 replications each. The ultrasonic tests were performed with two-frequency transducers (45 and 80 kHz). Prediction models of f<sub>c</sub> and E<sub>ci</sub> were statistically significant (P-value < 0,05) for both frequencies. The model using [C] as independent variable present better correlation with E<sub>ci</sub> (R<sup>2</sup> > 91,2%) and with f<sub>c</sub> (R<sup>2</sup> > 82%) than the model using only [V]. General regression models (regardless of the gravel type) were also statistically significant (P-value < 0.05), with R<sup>2</sup> > 79% and prediction errors higher than those obtained for the specific models for different rock types.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00630-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00630-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Mechanical Properties of Concrete Produced with Coarse Aggregates from Different Mineralogical Origins Using Ultrasonic Tests
The use of nondestructive techniques in the technological control of concrete allows to evaluate and monitor the condition of the material without interfering with its properties; therefore, it is highly desirable in on-site inspections. Among these techniques, ultrasonic testing stands out as one of the most promising by its speed and simplicity to obtain results. However, inferences of strength and stiffness properties using ultrasound parameters should be made with caution, since many factors may interfere with wave propagation. This research aimed to evaluate the behavior of parameters obtained by ultrasonic testing (velocity of wave propagation [V] and stiffness coefficient [C = density × V2]) as predictors of the strength (fc) and stiffness (Eci) of concrete produced with coarse aggregates from different mineralogical origins. To achieve the objective, 128 specimens were produced with four aggregate mineralogical origins and four water-cement ratios, with 8 replications each. The ultrasonic tests were performed with two-frequency transducers (45 and 80 kHz). Prediction models of fc and Eci were statistically significant (P-value < 0,05) for both frequencies. The model using [C] as independent variable present better correlation with Eci (R2 > 91,2%) and with fc (R2 > 82%) than the model using only [V]. General regression models (regardless of the gravel type) were also statistically significant (P-value < 0.05), with R2 > 79% and prediction errors higher than those obtained for the specific models for different rock types.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.