Stanislav E. Romanov, Viktor V. Shloma, Daniil A. Maksimov, Dmitry E. Koryakov
{"title":"SetDB1和Su(var)3-9对黑腹果蝇幼虫后期发育至关重要","authors":"Stanislav E. Romanov, Viktor V. Shloma, Daniil A. Maksimov, Dmitry E. Koryakov","doi":"10.1007/s10577-023-09743-7","DOIUrl":null,"url":null,"abstract":"<p>Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification — G9a, SetDB1/Egg, and Su(var)3-9 — are known in <i>Drosophila</i>. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants <i>egg</i>; <i>Su(var)3-9</i> displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in <i>Drosophila</i>.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"15 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster\",\"authors\":\"Stanislav E. Romanov, Viktor V. Shloma, Daniil A. Maksimov, Dmitry E. Koryakov\",\"doi\":\"10.1007/s10577-023-09743-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification — G9a, SetDB1/Egg, and Su(var)3-9 — are known in <i>Drosophila</i>. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants <i>egg</i>; <i>Su(var)3-9</i> displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in <i>Drosophila</i>.</p>\",\"PeriodicalId\":50698,\"journal\":{\"name\":\"Chromosome Research\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10577-023-09743-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-023-09743-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster
Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification — G9a, SetDB1/Egg, and Su(var)3-9 — are known in Drosophila. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants egg; Su(var)3-9 displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in Drosophila.
期刊介绍:
Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to:
· Chromosomes and their linkage to diseases;
· Chromosome organization within the nucleus;
· Chromatin biology (transcription, non-coding RNA, etc);
· Chromosome structure, function and mechanics;
· Chromosome and DNA repair;
· Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting,
dosage compensation, sex determination, chromosome remodeling);
· Architectural/epigenomic organization of the genome;
· Functional annotation of the genome;
· Functional and comparative genomics in plants and animals;
· Karyology studies that help resolve difficult taxonomic problems or that provide
clues to fundamental mechanisms of genome and karyotype evolution in plants and animals;
· Mitosis and Meiosis;
· Cancer cytogenomics.