水杨酸 1-单加氧酶的遗传和功能特性鉴定--该酶位于假单胞菌 AJR13 的整合和共轭元件 (ICE) 上

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-12-15 DOI:10.1007/s12275-023-00093-x
Igor Ivanovski, Gerben J. Zylstra
{"title":"水杨酸 1-单加氧酶的遗传和功能特性鉴定--该酶位于假单胞菌 AJR13 的整合和共轭元件 (ICE) 上","authors":"Igor Ivanovski, Gerben J. Zylstra","doi":"10.1007/s12275-023-00093-x","DOIUrl":null,"url":null,"abstract":"<p><i>Pseudomonas stutzeri</i> strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (<i>salA</i>) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied <i>Pseudomonas putida</i> KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the <i>salA</i> gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned <i>salA</i> gene restored growth on salicylate. Transfer of the cloned <i>salA</i> gene under control of the <i>lac</i> promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the <i>salA</i> gene in <i>E. coli</i> BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned <i>salA</i> gene under control of the <i>lac</i> promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic and Functional Characterization of a Salicylate 1-monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13\",\"authors\":\"Igor Ivanovski, Gerben J. Zylstra\",\"doi\":\"10.1007/s12275-023-00093-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Pseudomonas stutzeri</i> strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (<i>salA</i>) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied <i>Pseudomonas putida</i> KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the <i>salA</i> gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned <i>salA</i> gene restored growth on salicylate. Transfer of the cloned <i>salA</i> gene under control of the <i>lac</i> promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the <i>salA</i> gene in <i>E. coli</i> BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned <i>salA</i> gene under control of the <i>lac</i> promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12275-023-00093-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-023-00093-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分离出了能在相关联苯(BPH)和二苯基甲烷(DPM)上生长的 stutzeri 假单胞菌菌株 AJR13。联苯(BPH)和二苯基甲烷(DPM)降解途径基因存在于染色体的整合和共轭元件(ICE)上。对 AJR13 基因组序列的研究发现,尽管 AJR13 不在水杨酸盐上生长,但其编码的水杨酸盐 1-单加氧酶(salA)基因与 ICE 有关。将 ICE 移植到经过充分研究的假单胞菌 KT2440 上,得到了能在水杨酸盐上生长的 KT2440 菌株。对 KT2440 中 ICE 上的 salA 基因进行基因敲除诱变,可消除其在水杨酸盐上生长的能力。用克隆的 salA 基因对敲除基因进行补码,可恢复在水杨酸盐上的生长。将克隆的 salA 基因在 lac 启动子的控制下转移到 KT2440 中,可使菌株在水杨酸盐上生长。在大肠杆菌 BL21 DE3 中异源表达 salA 基因,可从水杨酸中产生儿茶酚,这证实它确实是一种水杨酸 1-单加氧酶。有趣的是,将克隆的 salA 基因在 lac 启动子的控制下转入 AJR13 后,菌株现在可以在水杨酸盐上生长,这表明下游儿茶酚途径的基因表达是完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic and Functional Characterization of a Salicylate 1-monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13

Pseudomonas stutzeri strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (salA) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied Pseudomonas putida KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the salA gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned salA gene restored growth on salicylate. Transfer of the cloned salA gene under control of the lac promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the salA gene in E. coli BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned salA gene under control of the lac promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1