{"title":"多孔介质中的对流混合:达西、孔隙尺度和赫勒-肖研究综述","authors":"Marco De Paoli","doi":"10.1140/epje/s10189-023-00390-8","DOIUrl":null,"url":null,"abstract":"<p>Convection-driven porous media flows are common in industrial processes and in nature. The multiscale and multiphase character of these systems and the inherent nonlinear flow dynamics make convection in porous media a complex phenomenon. As a result, a combination of different complementary approaches, namely theory, simulations and experiments, have been deployed to elucidate the intricate physics of convection in porous media. In this work, we review recent findings on mixing in fluid-saturated porous media convection. We focus on the dissolution of a heavy fluid layer into a lighter one, and we consider different flow configurations. We present Darcy, pore-scale and Hele-Shaw investigations inspired by geophysical processes. While the results obtained for Darcy flows match the dissolution behaviour predicted theoretically, Hele-Shaw and pore-scale investigations reveal a different and tangled scenario in which finite-size effects play a key role. Finally, we present recent numerical and experimental developments and we highlight possible future research directions. The findings reviewed in this work will be crucial to make reliable predictions about the long-term behaviour of dissolution and mixing in engineering and natural processes, which are required to tackle societal challenges such as climate change mitigation and energy transition.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00390-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies\",\"authors\":\"Marco De Paoli\",\"doi\":\"10.1140/epje/s10189-023-00390-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convection-driven porous media flows are common in industrial processes and in nature. The multiscale and multiphase character of these systems and the inherent nonlinear flow dynamics make convection in porous media a complex phenomenon. As a result, a combination of different complementary approaches, namely theory, simulations and experiments, have been deployed to elucidate the intricate physics of convection in porous media. In this work, we review recent findings on mixing in fluid-saturated porous media convection. We focus on the dissolution of a heavy fluid layer into a lighter one, and we consider different flow configurations. We present Darcy, pore-scale and Hele-Shaw investigations inspired by geophysical processes. While the results obtained for Darcy flows match the dissolution behaviour predicted theoretically, Hele-Shaw and pore-scale investigations reveal a different and tangled scenario in which finite-size effects play a key role. Finally, we present recent numerical and experimental developments and we highlight possible future research directions. The findings reviewed in this work will be crucial to make reliable predictions about the long-term behaviour of dissolution and mixing in engineering and natural processes, which are required to tackle societal challenges such as climate change mitigation and energy transition.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"46 12\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00390-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-023-00390-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00390-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies
Convection-driven porous media flows are common in industrial processes and in nature. The multiscale and multiphase character of these systems and the inherent nonlinear flow dynamics make convection in porous media a complex phenomenon. As a result, a combination of different complementary approaches, namely theory, simulations and experiments, have been deployed to elucidate the intricate physics of convection in porous media. In this work, we review recent findings on mixing in fluid-saturated porous media convection. We focus on the dissolution of a heavy fluid layer into a lighter one, and we consider different flow configurations. We present Darcy, pore-scale and Hele-Shaw investigations inspired by geophysical processes. While the results obtained for Darcy flows match the dissolution behaviour predicted theoretically, Hele-Shaw and pore-scale investigations reveal a different and tangled scenario in which finite-size effects play a key role. Finally, we present recent numerical and experimental developments and we highlight possible future research directions. The findings reviewed in this work will be crucial to make reliable predictions about the long-term behaviour of dissolution and mixing in engineering and natural processes, which are required to tackle societal challenges such as climate change mitigation and energy transition.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.