Nils Oskar Jõgi, Karin Ersson, Kjell Alving, Christina Krantz, Andrei Malinovschi
{"title":"测量与原发性睫状肌运动障碍有关的鼻腔一氧化氮的设备比较研究","authors":"Nils Oskar Jõgi, Karin Ersson, Kjell Alving, Christina Krantz, Andrei Malinovschi","doi":"10.1088/1752-7163/ad10f9","DOIUrl":null,"url":null,"abstract":"Primary ciliary dyskinesia (PCD) is a genetic respiratory disease characterized by chronic cough, recurrent respiratory infections, and rhinosinusitis. The measurement of nasal nitric oxide (nNO) against resistance has been suggested as a sensitive screening method. However, current recommendations argue for the use of expensive, chemiluminescence devices to measure nNO. This study aimed to compare nNO measurement using three different devices in distinguishing PCD patients from healthy controls and cystic fibrosis (CF) patients and to evaluate their diagnostic precision. The study included 16 controls, 16 PCD patients, and 12 CF patients matched for age and sex. nNO measurements were performed using a chemiluminescence device (Eco Medics CLD 88sp), and two devices based on electrochemical sensors (Medisoft FeNO+ and NIOX Vero) following standardized guidelines. Correlation estimation, Bland–Altman, ROC curve, and one-way ANOVA were used to assess device differences and diagnostic performance. Significantly lower nNO output values were observed in PCD and CF patients compared to controls during exhalation against resistance. The correlation analysis showed high agreement among the three devices. ROC curve analysis demonstrated 100% sensitivity and specificity at different cut-off values for all devices in distinguishing PCD patients from controls (optimal cut-offs: EcoMedics 73, Medisoft 92 and NIOX 87 (nl min<sup>−1</sup> )). Higher nNO output values were obtained with the Medisoft and NIOX devices as compared to the EcoMedics device, with a bias of−19 nl min<sup>−1</sup> (95% CI: −73–35) and −21 nl min<sup>−1</sup> (−73–31) accordingly. These findings indicate that all three tested devices can potentially serve as diagnostic tools for PCD if device specific cut-off values are used. This last-mentioned aspect warrants further studies and consideration in defining optimal cut-offs for individual device.","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"25 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device comparison study to measure nasal nitric oxide in relation to primary ciliary dyskinesia\",\"authors\":\"Nils Oskar Jõgi, Karin Ersson, Kjell Alving, Christina Krantz, Andrei Malinovschi\",\"doi\":\"10.1088/1752-7163/ad10f9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Primary ciliary dyskinesia (PCD) is a genetic respiratory disease characterized by chronic cough, recurrent respiratory infections, and rhinosinusitis. The measurement of nasal nitric oxide (nNO) against resistance has been suggested as a sensitive screening method. However, current recommendations argue for the use of expensive, chemiluminescence devices to measure nNO. This study aimed to compare nNO measurement using three different devices in distinguishing PCD patients from healthy controls and cystic fibrosis (CF) patients and to evaluate their diagnostic precision. The study included 16 controls, 16 PCD patients, and 12 CF patients matched for age and sex. nNO measurements were performed using a chemiluminescence device (Eco Medics CLD 88sp), and two devices based on electrochemical sensors (Medisoft FeNO+ and NIOX Vero) following standardized guidelines. Correlation estimation, Bland–Altman, ROC curve, and one-way ANOVA were used to assess device differences and diagnostic performance. Significantly lower nNO output values were observed in PCD and CF patients compared to controls during exhalation against resistance. The correlation analysis showed high agreement among the three devices. ROC curve analysis demonstrated 100% sensitivity and specificity at different cut-off values for all devices in distinguishing PCD patients from controls (optimal cut-offs: EcoMedics 73, Medisoft 92 and NIOX 87 (nl min<sup>−1</sup> )). Higher nNO output values were obtained with the Medisoft and NIOX devices as compared to the EcoMedics device, with a bias of−19 nl min<sup>−1</sup> (95% CI: −73–35) and −21 nl min<sup>−1</sup> (−73–31) accordingly. These findings indicate that all three tested devices can potentially serve as diagnostic tools for PCD if device specific cut-off values are used. This last-mentioned aspect warrants further studies and consideration in defining optimal cut-offs for individual device.\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad10f9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad10f9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Device comparison study to measure nasal nitric oxide in relation to primary ciliary dyskinesia
Primary ciliary dyskinesia (PCD) is a genetic respiratory disease characterized by chronic cough, recurrent respiratory infections, and rhinosinusitis. The measurement of nasal nitric oxide (nNO) against resistance has been suggested as a sensitive screening method. However, current recommendations argue for the use of expensive, chemiluminescence devices to measure nNO. This study aimed to compare nNO measurement using three different devices in distinguishing PCD patients from healthy controls and cystic fibrosis (CF) patients and to evaluate their diagnostic precision. The study included 16 controls, 16 PCD patients, and 12 CF patients matched for age and sex. nNO measurements were performed using a chemiluminescence device (Eco Medics CLD 88sp), and two devices based on electrochemical sensors (Medisoft FeNO+ and NIOX Vero) following standardized guidelines. Correlation estimation, Bland–Altman, ROC curve, and one-way ANOVA were used to assess device differences and diagnostic performance. Significantly lower nNO output values were observed in PCD and CF patients compared to controls during exhalation against resistance. The correlation analysis showed high agreement among the three devices. ROC curve analysis demonstrated 100% sensitivity and specificity at different cut-off values for all devices in distinguishing PCD patients from controls (optimal cut-offs: EcoMedics 73, Medisoft 92 and NIOX 87 (nl min−1 )). Higher nNO output values were obtained with the Medisoft and NIOX devices as compared to the EcoMedics device, with a bias of−19 nl min−1 (95% CI: −73–35) and −21 nl min−1 (−73–31) accordingly. These findings indicate that all three tested devices can potentially serve as diagnostic tools for PCD if device specific cut-off values are used. This last-mentioned aspect warrants further studies and consideration in defining optimal cut-offs for individual device.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.