Kevinjeorjios Pellumbi, Dominik Krisch, Clara Rettenmaier, Houssein Awada, He Sun, Luyang Song, Sebastian A. Sanden, Lucas Hoof, Leonard Messing, Kai junge Puring, Daniel Siegmund, Beatriz Roldan Cuenya, Wolfgang Schöfberger, Ulf-Peter Apfel
{"title":"通过分子调谐环境将二氧化碳电解槽的琼脂负荷降至最低","authors":"Kevinjeorjios Pellumbi, Dominik Krisch, Clara Rettenmaier, Houssein Awada, He Sun, Luyang Song, Sebastian A. Sanden, Lucas Hoof, Leonard Messing, Kai junge Puring, Daniel Siegmund, Beatriz Roldan Cuenya, Wolfgang Schöfberger, Ulf-Peter Apfel","doi":"10.1016/j.xcrp.2023.101746","DOIUrl":null,"url":null,"abstract":"<p>Electrochemically converting CO<sub>2</sub> to renewable synthons is steadily becoming a globally scalable and important CO<sub>2</sub> utilization technology. Nevertheless, most industrial endeavors employ catalysts based on metallic Ag or Au, with few catalytically competitive alternatives, showing similar activity, high mass activity, and cost efficiency. Similarly, this effort is hindered by insufficient testing of promising materials in application-oriented conditions. We herein present a holistic pathway starting from the conceptualization of different Ag(I)-based molecular catalysts to their complete integration into directly industrially applicable cell assemblies. Notably, optimization of not only the catalyst but also the operational conditions allowed us to achieve CO<sub>2</sub> electrolysis for at least 110 h at 300 mA cm<sup>−2</sup> and 80 h at 600 mA cm<sup>−2</sup> with an FE<sub>CO</sub> decay rate of 0.01% h<sup>−1</sup>. Beyond significant mass activity improvements for CO production, we provide the community with a broad toolbox toward improving catalytic and cell performance directly between different cell sizes.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"29 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments\",\"authors\":\"Kevinjeorjios Pellumbi, Dominik Krisch, Clara Rettenmaier, Houssein Awada, He Sun, Luyang Song, Sebastian A. Sanden, Lucas Hoof, Leonard Messing, Kai junge Puring, Daniel Siegmund, Beatriz Roldan Cuenya, Wolfgang Schöfberger, Ulf-Peter Apfel\",\"doi\":\"10.1016/j.xcrp.2023.101746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemically converting CO<sub>2</sub> to renewable synthons is steadily becoming a globally scalable and important CO<sub>2</sub> utilization technology. Nevertheless, most industrial endeavors employ catalysts based on metallic Ag or Au, with few catalytically competitive alternatives, showing similar activity, high mass activity, and cost efficiency. Similarly, this effort is hindered by insufficient testing of promising materials in application-oriented conditions. We herein present a holistic pathway starting from the conceptualization of different Ag(I)-based molecular catalysts to their complete integration into directly industrially applicable cell assemblies. Notably, optimization of not only the catalyst but also the operational conditions allowed us to achieve CO<sub>2</sub> electrolysis for at least 110 h at 300 mA cm<sup>−2</sup> and 80 h at 600 mA cm<sup>−2</sup> with an FE<sub>CO</sub> decay rate of 0.01% h<sup>−1</sup>. Beyond significant mass activity improvements for CO production, we provide the community with a broad toolbox toward improving catalytic and cell performance directly between different cell sizes.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101746\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101746","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过电化学方法将二氧化碳转化为可再生合成物正逐步成为一项可在全球推广的重要二氧化碳利用技术。然而,大多数工业研究都采用基于金属银或金的催化剂,很少有具有催化竞争力的替代品能显示出类似的活性、高的质量活性和成本效益。同样,在以应用为导向的条件下对有前途的材料进行的测试不足也阻碍了这方面的努力。在此,我们提出了一个整体路径,从不同的银(I)基分子催化剂的概念化开始,到将其完全集成到直接适用于工业的电池组件中。值得注意的是,我们不仅优化了催化剂,还优化了操作条件,从而实现了在 300 mA cm-2 条件下至少电解 110 小时二氧化碳,在 600 mA cm-2 条件下至少电解 80 小时二氧化碳,FECO 衰减率为 0.01% h-1。除了显著提高 CO 生产的质量活性外,我们还为社区提供了一个广泛的工具箱,可直接改善不同尺寸电池之间的催化和电池性能。
Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments
Electrochemically converting CO2 to renewable synthons is steadily becoming a globally scalable and important CO2 utilization technology. Nevertheless, most industrial endeavors employ catalysts based on metallic Ag or Au, with few catalytically competitive alternatives, showing similar activity, high mass activity, and cost efficiency. Similarly, this effort is hindered by insufficient testing of promising materials in application-oriented conditions. We herein present a holistic pathway starting from the conceptualization of different Ag(I)-based molecular catalysts to their complete integration into directly industrially applicable cell assemblies. Notably, optimization of not only the catalyst but also the operational conditions allowed us to achieve CO2 electrolysis for at least 110 h at 300 mA cm−2 and 80 h at 600 mA cm−2 with an FECO decay rate of 0.01% h−1. Beyond significant mass activity improvements for CO production, we provide the community with a broad toolbox toward improving catalytic and cell performance directly between different cell sizes.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.