{"title":"带有末端全氟丁基的醚键磷脂酰胆碱水合双分子层的热力学研究","authors":"Masaya Miyazaki , Chika Arisaka , Ai Nakagawara , Nanako Sasaki , Hiroshi Takahashi , Toshiyuki Takagi , Hideki Amii , Masashi Sonoyama","doi":"10.1016/j.bbamem.2023.184261","DOIUrl":null,"url":null,"abstract":"<div><p><span>Novel terminally perfluorobutyl group-containing ether-linked phosphatidylcholines with different alkyl chain lengths (di-</span><em>O</em>-F4-Cn-PCs, <em>n</em> = 14,16 and 18) were developed as possible materials for stable liposomes aiming at applications of structural and functional analyses of membrane proteins. Differential scanning calorimetric investigations of the thermotropic transition of hydrated di-<em>O</em><span>-F4-Cn-PC bilayers demonstrated that the transition temperature of every di-</span><em>O</em>-F4-Cn-PC decreases by ~20 °C compared to their corresponding non-fluorinated PCs, di-<em>O</em>-Cn-PCs. With the elongation of the hydrophobic chain, on the other hand, the transition enthalpy (ΔH) and entropy (ΔS) increased in a linear manner. Comparison of ΔH and ΔS values against the net hydrocarbon chain length between di-<em>O</em>-F4-Cn-PCs and di-<em>O</em>-Cn-PCs strongly suggests that in the thermotropic transition of the di-<em>O</em>-F4-Cn-PC membrane, the perfluorobutyl segments undergo very limited structural changes; therefore, the hydrocarbon segments are mainly responsible for the phase transition.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 2","pages":"Article 184261"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic study on hydrated bilayers of ether-linked phosphatidylcholines with terminal perfluorobutyl group\",\"authors\":\"Masaya Miyazaki , Chika Arisaka , Ai Nakagawara , Nanako Sasaki , Hiroshi Takahashi , Toshiyuki Takagi , Hideki Amii , Masashi Sonoyama\",\"doi\":\"10.1016/j.bbamem.2023.184261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Novel terminally perfluorobutyl group-containing ether-linked phosphatidylcholines with different alkyl chain lengths (di-</span><em>O</em>-F4-Cn-PCs, <em>n</em> = 14,16 and 18) were developed as possible materials for stable liposomes aiming at applications of structural and functional analyses of membrane proteins. Differential scanning calorimetric investigations of the thermotropic transition of hydrated di-<em>O</em><span>-F4-Cn-PC bilayers demonstrated that the transition temperature of every di-</span><em>O</em>-F4-Cn-PC decreases by ~20 °C compared to their corresponding non-fluorinated PCs, di-<em>O</em>-Cn-PCs. With the elongation of the hydrophobic chain, on the other hand, the transition enthalpy (ΔH) and entropy (ΔS) increased in a linear manner. Comparison of ΔH and ΔS values against the net hydrocarbon chain length between di-<em>O</em>-F4-Cn-PCs and di-<em>O</em>-Cn-PCs strongly suggests that in the thermotropic transition of the di-<em>O</em>-F4-Cn-PC membrane, the perfluorobutyl segments undergo very limited structural changes; therefore, the hydrocarbon segments are mainly responsible for the phase transition.</p></div>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\"1866 2\",\"pages\":\"Article 184261\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273623001438\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273623001438","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thermodynamic study on hydrated bilayers of ether-linked phosphatidylcholines with terminal perfluorobutyl group
Novel terminally perfluorobutyl group-containing ether-linked phosphatidylcholines with different alkyl chain lengths (di-O-F4-Cn-PCs, n = 14,16 and 18) were developed as possible materials for stable liposomes aiming at applications of structural and functional analyses of membrane proteins. Differential scanning calorimetric investigations of the thermotropic transition of hydrated di-O-F4-Cn-PC bilayers demonstrated that the transition temperature of every di-O-F4-Cn-PC decreases by ~20 °C compared to their corresponding non-fluorinated PCs, di-O-Cn-PCs. With the elongation of the hydrophobic chain, on the other hand, the transition enthalpy (ΔH) and entropy (ΔS) increased in a linear manner. Comparison of ΔH and ΔS values against the net hydrocarbon chain length between di-O-F4-Cn-PCs and di-O-Cn-PCs strongly suggests that in the thermotropic transition of the di-O-F4-Cn-PC membrane, the perfluorobutyl segments undergo very limited structural changes; therefore, the hydrocarbon segments are mainly responsible for the phase transition.
期刊介绍:
BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.