保护患者隐私:基于联合学习和 CBR 生成可用的医疗方案

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information & Management Pub Date : 2023-12-17 DOI:10.1016/j.im.2023.103908
{"title":"保护患者隐私:基于联合学习和 CBR 生成可用的医疗方案","authors":"","doi":"10.1016/j.im.2023.103908","DOIUrl":null,"url":null,"abstract":"<div><p>Although the favorable impact of sharing electronic medical records<span> (EMRs) with other hospitals on improving clinical decision-making efficiency is widely acknowledged, the actual implementation of EMR sharing has been limited to some extent because of patient privacy protections. This study proposes a three-stage framework to retrieve medical treatment plans from multiple hospitals based on federated learning and case-based reasoning (CBR). We demonstrate that the proposed framework compensates for the privacy protection weaknesses of CBR and solves the problem of data islands among hospitals.</span></p></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"61 7","pages":"Article 103908"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patient privacy protection: Generating available medical treatment plans based on federated learning and CBR\",\"authors\":\"\",\"doi\":\"10.1016/j.im.2023.103908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although the favorable impact of sharing electronic medical records<span> (EMRs) with other hospitals on improving clinical decision-making efficiency is widely acknowledged, the actual implementation of EMR sharing has been limited to some extent because of patient privacy protections. This study proposes a three-stage framework to retrieve medical treatment plans from multiple hospitals based on federated learning and case-based reasoning (CBR). We demonstrate that the proposed framework compensates for the privacy protection weaknesses of CBR and solves the problem of data islands among hospitals.</span></p></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"61 7\",\"pages\":\"Article 103908\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720623001568\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720623001568","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

尽管与其他医院共享电子病历(EMR)对提高临床决策效率的有利影响已得到广泛认可,但由于患者隐私保护的原因,EMR 共享的实际实施在一定程度上受到限制。本研究提出了一种基于联合学习和病例推理(CBR)的三阶段框架,用于检索多家医院的医疗计划。我们证明了所提出的框架弥补了 CBR 在隐私保护方面的不足,并解决了医院间数据孤岛的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patient privacy protection: Generating available medical treatment plans based on federated learning and CBR

Although the favorable impact of sharing electronic medical records (EMRs) with other hospitals on improving clinical decision-making efficiency is widely acknowledged, the actual implementation of EMR sharing has been limited to some extent because of patient privacy protections. This study proposes a three-stage framework to retrieve medical treatment plans from multiple hospitals based on federated learning and case-based reasoning (CBR). We demonstrate that the proposed framework compensates for the privacy protection weaknesses of CBR and solves the problem of data islands among hospitals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
期刊最新文献
Cutting corners as a coping strategy in information technology use: Unraveling the mind's dilemma Cybersecurity end-user compliance: Password management versus update compliance Towards new frontiers: How attainment discrepancy affects exploratory behavior in crowdfunding What drives users to tip? The impact of contributor experience, content length, and content type on online video sharing platforms An ensemble deep learning model for fast classification of Twitter spam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1