投资俱乐部的集体投资组合选择方法

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information & Management Pub Date : 2023-12-19 DOI:10.1016/j.im.2023.103909
Yung-Ming Li , Lien-Fa Lin , Min-Cheng Hung
{"title":"投资俱乐部的集体投资组合选择方法","authors":"Yung-Ming Li ,&nbsp;Lien-Fa Lin ,&nbsp;Min-Cheng Hung","doi":"10.1016/j.im.2023.103909","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, with the popularity of social investing platforms, participating in an investment club has become a good choice for investors. Following financial experts in the investment club likely generates more profit as they have higher expertise in planning an investment portfolio. In this study, we propose a portfolio selection mechanism that combines collective intelligence<span> extracted from investors’ opinions and LSTM stock price predictions to infer a club's investment preference and predict the profitability of the extracted investment targets. Based on a club's risk tolerance and investment preference, the proposed mechanism can create an appropriate stock portfolio for the investors in the club. Utilizing StockTwits and stock historical data, the experimental results verify that the proposed portfolio selection mechanism performs better than market indices and other benchmark approaches in the market.</span></p></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"61 2","pages":"Article 103909"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A collective portfolio selection approach for investment clubs\",\"authors\":\"Yung-Ming Li ,&nbsp;Lien-Fa Lin ,&nbsp;Min-Cheng Hung\",\"doi\":\"10.1016/j.im.2023.103909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, with the popularity of social investing platforms, participating in an investment club has become a good choice for investors. Following financial experts in the investment club likely generates more profit as they have higher expertise in planning an investment portfolio. In this study, we propose a portfolio selection mechanism that combines collective intelligence<span> extracted from investors’ opinions and LSTM stock price predictions to infer a club's investment preference and predict the profitability of the extracted investment targets. Based on a club's risk tolerance and investment preference, the proposed mechanism can create an appropriate stock portfolio for the investors in the club. Utilizing StockTwits and stock historical data, the experimental results verify that the proposed portfolio selection mechanism performs better than market indices and other benchmark approaches in the market.</span></p></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"61 2\",\"pages\":\"Article 103909\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037872062300157X\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037872062300157X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近,随着社交投资平台的流行,参加投资俱乐部已成为投资者的一个不错的选择。跟随投资俱乐部中的金融专家可能会产生更多收益,因为他们在规划投资组合方面具有更高的专业知识。在本研究中,我们提出了一种投资组合选择机制,该机制结合了从投资者意见中提取的集体智慧和 LSTM 股价预测,以推断俱乐部的投资偏好,并预测所提取投资目标的盈利能力。根据俱乐部的风险承受能力和投资偏好,建议的机制可以为俱乐部中的投资者创建合适的股票投资组合。利用 StockTwits 和股票历史数据,实验结果验证了所提出的投资组合选择机制的性能优于市场指数和市场上的其他基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A collective portfolio selection approach for investment clubs

Recently, with the popularity of social investing platforms, participating in an investment club has become a good choice for investors. Following financial experts in the investment club likely generates more profit as they have higher expertise in planning an investment portfolio. In this study, we propose a portfolio selection mechanism that combines collective intelligence extracted from investors’ opinions and LSTM stock price predictions to infer a club's investment preference and predict the profitability of the extracted investment targets. Based on a club's risk tolerance and investment preference, the proposed mechanism can create an appropriate stock portfolio for the investors in the club. Utilizing StockTwits and stock historical data, the experimental results verify that the proposed portfolio selection mechanism performs better than market indices and other benchmark approaches in the market.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
期刊最新文献
Cutting corners as a coping strategy in information technology use: Unraveling the mind's dilemma Cybersecurity end-user compliance: Password management versus update compliance Towards new frontiers: How attainment discrepancy affects exploratory behavior in crowdfunding What drives users to tip? The impact of contributor experience, content length, and content type on online video sharing platforms An ensemble deep learning model for fast classification of Twitter spam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1