具有热辐射和热生成效应的非线性倾斜表面上的磁流体卡松纳米流体流的局部非相似解:第三次截断的利用

IF 2.5 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Porous Media Pub Date : 2023-12-01 DOI:10.1615/jpormedia.2023049654
Raheela Razzaq, Saiqa Sagheer, Umer Farooq
{"title":"具有热辐射和热生成效应的非线性倾斜表面上的磁流体卡松纳米流体流的局部非相似解:第三次截断的利用","authors":"Raheela Razzaq, Saiqa Sagheer, Umer Farooq","doi":"10.1615/jpormedia.2023049654","DOIUrl":null,"url":null,"abstract":"The current research aims to investigate the influences of thermal radiation, heat generation and chemical reaction on the magnetohydrodynamic (MHD) Casson fluid flow model over a non-linear inclined surface. The Buongiorno model of the thermal efficiency of fluid flows in the existence of Brownian motion and Thermophoresis features served as the foundation of employed non-similar modeling. The present article uses the local-similarity assumption to solve the problem up to the third degree of truncation. The pseudo similarity parameter, stream function, and modified streamwise coordinate all satisfy the continuity equation in the same way, which transforms the energy, momentum and mass equations into a non-similar dimensionless boundary layer (BL) problem. Here generated the non-similar equations upto third level of truncation in order to compare the numerical results produced by the different iterations. The built-in MATLAB function bvp4c is used to discover numerical values to these equations. In terms of energy, velocity, and mass configuration, the effect of particular physical factors are stated; as the inclination parameter and magnetic parameter are increased the velocity outline is decreased. The velocity profile is improved when a rise in the Casson fluid factor is observed. As heat generation and absorption increases, the energy profile rises. The growth of the thermophoresis factor and chemical reaction parameter reduces the concentration profile. Mass diffusion portrays increases as the Brownian motion factor raises. Moreover, to compare the answers with various level of truncation, the relative error was also estimated.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":"20 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Non-Similar Solutions of Magnetohydrodynamic Casson Nanofluid Flow over a Non-Linear Inclined Surface with Thermal Radiation and Heat Generation Effects: A Utilization of upto Third Truncation\",\"authors\":\"Raheela Razzaq, Saiqa Sagheer, Umer Farooq\",\"doi\":\"10.1615/jpormedia.2023049654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current research aims to investigate the influences of thermal radiation, heat generation and chemical reaction on the magnetohydrodynamic (MHD) Casson fluid flow model over a non-linear inclined surface. The Buongiorno model of the thermal efficiency of fluid flows in the existence of Brownian motion and Thermophoresis features served as the foundation of employed non-similar modeling. The present article uses the local-similarity assumption to solve the problem up to the third degree of truncation. The pseudo similarity parameter, stream function, and modified streamwise coordinate all satisfy the continuity equation in the same way, which transforms the energy, momentum and mass equations into a non-similar dimensionless boundary layer (BL) problem. Here generated the non-similar equations upto third level of truncation in order to compare the numerical results produced by the different iterations. The built-in MATLAB function bvp4c is used to discover numerical values to these equations. In terms of energy, velocity, and mass configuration, the effect of particular physical factors are stated; as the inclination parameter and magnetic parameter are increased the velocity outline is decreased. The velocity profile is improved when a rise in the Casson fluid factor is observed. As heat generation and absorption increases, the energy profile rises. The growth of the thermophoresis factor and chemical reaction parameter reduces the concentration profile. Mass diffusion portrays increases as the Brownian motion factor raises. Moreover, to compare the answers with various level of truncation, the relative error was also estimated.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2023049654\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2023049654","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究旨在探讨热辐射、发热和化学反应对非线性倾斜表面上的磁流体动力学(MHD)卡森流体流动模型的影响。在布朗运动和热泳特征存在的情况下,流体流动热效率的 Buongiorno 模型是所采用的非相似模型的基础。本文使用局部相似性假设来解决截断三度以内的问题。伪相似参数、流函数和修正流向坐标都以相同的方式满足连续性方程,从而将能量、动量和质量方程转化为非相似无量纲边界层(BL)问题。为了比较不同迭代产生的数值结果,这里生成了截断到第三级的非相似方程。MATLAB 内置函数 bvp4c 用于发现这些方程的数值。在能量、速度和质量配置方面,说明了特定物理因素的影响;随着倾角参数和磁参数的增加,速度轮廓减小。当观察到卡松流体系数上升时,速度轮廓得到改善。随着热量产生和吸收的增加,能量曲线也随之上升。热泳系数和化学反应参数的增加会降低浓度曲线。随着布朗运动系数的增加,质量扩散也随之增加。此外,为了比较不同截断水平下的答案,还估算了相对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local Non-Similar Solutions of Magnetohydrodynamic Casson Nanofluid Flow over a Non-Linear Inclined Surface with Thermal Radiation and Heat Generation Effects: A Utilization of upto Third Truncation
The current research aims to investigate the influences of thermal radiation, heat generation and chemical reaction on the magnetohydrodynamic (MHD) Casson fluid flow model over a non-linear inclined surface. The Buongiorno model of the thermal efficiency of fluid flows in the existence of Brownian motion and Thermophoresis features served as the foundation of employed non-similar modeling. The present article uses the local-similarity assumption to solve the problem up to the third degree of truncation. The pseudo similarity parameter, stream function, and modified streamwise coordinate all satisfy the continuity equation in the same way, which transforms the energy, momentum and mass equations into a non-similar dimensionless boundary layer (BL) problem. Here generated the non-similar equations upto third level of truncation in order to compare the numerical results produced by the different iterations. The built-in MATLAB function bvp4c is used to discover numerical values to these equations. In terms of energy, velocity, and mass configuration, the effect of particular physical factors are stated; as the inclination parameter and magnetic parameter are increased the velocity outline is decreased. The velocity profile is improved when a rise in the Casson fluid factor is observed. As heat generation and absorption increases, the energy profile rises. The growth of the thermophoresis factor and chemical reaction parameter reduces the concentration profile. Mass diffusion portrays increases as the Brownian motion factor raises. Moreover, to compare the answers with various level of truncation, the relative error was also estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Media
Journal of Porous Media 工程技术-工程:机械
CiteScore
3.50
自引率
8.70%
发文量
89
审稿时长
12.5 months
期刊介绍: The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.
期刊最新文献
Multi‑scale Experimental Investigations on the Deterioration Mechanism of Sandstone after high-temperature treatment Geometric models for incorporating solid accumulation at the nodes of open-cell foams CONVECTIVE FLOW AND HEAT TRANSPORT OF CLAY NANOFLUID ACROSS A VERTICAL SURFACE IN A DARCY-BRINKMAN POROUS MEDIUM Heat Transfer Enhancement of Modified Sodium Acetate Trihydrate Composite Phase Change Material with Metal Foams An Advanced Nine-Point Scheme based on Finite Analysis in Two-Dimensional Numerical Reservoir Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1