{"title":"丙二酰-CoA 还原酶 N 端结构域的动力学特征","authors":"Mirela Tkalcic Cavuzic, Grover L. Waldrop","doi":"10.1016/j.bbapap.2023.140986","DOIUrl":null,"url":null,"abstract":"<div><p><span>Climate change is driving a search for environmentally safe methods to produce chemicals used in ordinary life. One such molecule is 3-hydroxypropionic acid, which is a platform industrial chemical used as a precursor for a variety of other chemical end products. The biosynthesis<span> of 3-hydroxypropionic acid can be achieved in recombinant microorganisms via malonyl-CoA reductase<span> in two separate reactions. The reduction of malonyl-CoA by NADPH to form malonic semialdehyde is catalyzed in the C-terminal domain of malonyl-CoA reductase, while the subsequent reduction of malonic semialdehyde to 3-hydroxypropionic acid is accomplished in the N-terminal domain of the enzyme. A new assay for the reverse reaction of the N-terminal domain of malonyl-CoA reductase from </span></span></span><span><em>Chloroflexus aurantiacus</em></span><span> activity has been developed. This assay was used to determine the kinetic mechanism and for isotope effect studies. Kinetic characterization using initial velocity patterns revealed random binding of the substrates NADP</span><sup>+</sup> and 3-hydroxypropionic acid. Isotope effects showed substrates react to give products faster than they dissociate and that the products of the reverse reaction, NADPH and malonic semialdehyde, have a low affinity for the enzyme. Multiple isotope effects suggest proton and hydride transfer occur in a concerted fashion. This detailed kinetic characterization of the reaction catalyzed by the N-terminal domain of malonyl-CoA reductase could aid in engineering of the enzyme to make the biosynthesis of 3-hydroxypropionic acid commercially competitive with its production from fossil fuels.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic characterization of the N-terminal domain of Malonyl-CoA reductase\",\"authors\":\"Mirela Tkalcic Cavuzic, Grover L. Waldrop\",\"doi\":\"10.1016/j.bbapap.2023.140986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Climate change is driving a search for environmentally safe methods to produce chemicals used in ordinary life. One such molecule is 3-hydroxypropionic acid, which is a platform industrial chemical used as a precursor for a variety of other chemical end products. The biosynthesis<span> of 3-hydroxypropionic acid can be achieved in recombinant microorganisms via malonyl-CoA reductase<span> in two separate reactions. The reduction of malonyl-CoA by NADPH to form malonic semialdehyde is catalyzed in the C-terminal domain of malonyl-CoA reductase, while the subsequent reduction of malonic semialdehyde to 3-hydroxypropionic acid is accomplished in the N-terminal domain of the enzyme. A new assay for the reverse reaction of the N-terminal domain of malonyl-CoA reductase from </span></span></span><span><em>Chloroflexus aurantiacus</em></span><span> activity has been developed. This assay was used to determine the kinetic mechanism and for isotope effect studies. Kinetic characterization using initial velocity patterns revealed random binding of the substrates NADP</span><sup>+</sup> and 3-hydroxypropionic acid. Isotope effects showed substrates react to give products faster than they dissociate and that the products of the reverse reaction, NADPH and malonic semialdehyde, have a low affinity for the enzyme. Multiple isotope effects suggest proton and hydride transfer occur in a concerted fashion. This detailed kinetic characterization of the reaction catalyzed by the N-terminal domain of malonyl-CoA reductase could aid in engineering of the enzyme to make the biosynthesis of 3-hydroxypropionic acid commercially competitive with its production from fossil fuels.</p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963923001000\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923001000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
气候变化正在推动人们寻找环境安全的方法来生产日常生活中使用的化学品。3-hydroxypropionic acid(3-羟基丙酸)就是这样一种分子,它是一种平台型工业化学品,可用作多种其他化学最终产品的前体。3-hydroxypropionic acid 的生物合成可在重组微生物中通过丙二酰-CoA 还原酶在两个独立的反应中实现。丙二酰-CoA 被 NADPH 还原形成丙二酸半醛的过程是由丙二酰-CoA 还原酶的 C 端结构域催化的,而随后丙二酸半醛还原成 3-羟基丙酸的过程则是由酶的 N 端结构域完成的。针对 Chloroflexus aurantiacus 活性丙二酰-CoA 还原酶 N 端结构域的逆反应,我们开发了一种新的检测方法。该测定法用于确定动力学机制和同位素效应研究。利用初始速度模式进行的动力学表征显示,底物 NADP+ 和 3-hydroxypropionic acid 的结合是随机的。同位素效应表明,底物反应生成产物的速度快于它们的解离速度,而逆反应产物 NADPH 和丙二酸半醛对酶的亲和力较低。多同位素效应表明质子和氢化物的转移是以协调的方式进行的。对丙二酰-CoA 还原酶 N 端结构域催化的反应进行详细的动力学表征,有助于对酶进行工程设计,使 3-羟基丙酸的生物合成在商业上具有竞争力,而不是从化石燃料中生产。
Kinetic characterization of the N-terminal domain of Malonyl-CoA reductase
Climate change is driving a search for environmentally safe methods to produce chemicals used in ordinary life. One such molecule is 3-hydroxypropionic acid, which is a platform industrial chemical used as a precursor for a variety of other chemical end products. The biosynthesis of 3-hydroxypropionic acid can be achieved in recombinant microorganisms via malonyl-CoA reductase in two separate reactions. The reduction of malonyl-CoA by NADPH to form malonic semialdehyde is catalyzed in the C-terminal domain of malonyl-CoA reductase, while the subsequent reduction of malonic semialdehyde to 3-hydroxypropionic acid is accomplished in the N-terminal domain of the enzyme. A new assay for the reverse reaction of the N-terminal domain of malonyl-CoA reductase from Chloroflexus aurantiacus activity has been developed. This assay was used to determine the kinetic mechanism and for isotope effect studies. Kinetic characterization using initial velocity patterns revealed random binding of the substrates NADP+ and 3-hydroxypropionic acid. Isotope effects showed substrates react to give products faster than they dissociate and that the products of the reverse reaction, NADPH and malonic semialdehyde, have a low affinity for the enzyme. Multiple isotope effects suggest proton and hydride transfer occur in a concerted fashion. This detailed kinetic characterization of the reaction catalyzed by the N-terminal domain of malonyl-CoA reductase could aid in engineering of the enzyme to make the biosynthesis of 3-hydroxypropionic acid commercially competitive with its production from fossil fuels.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.